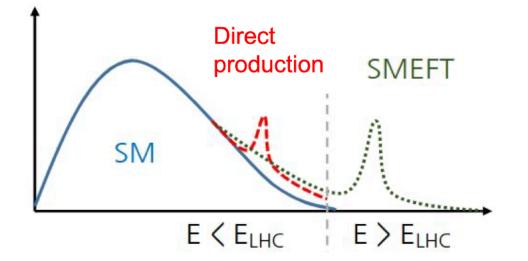


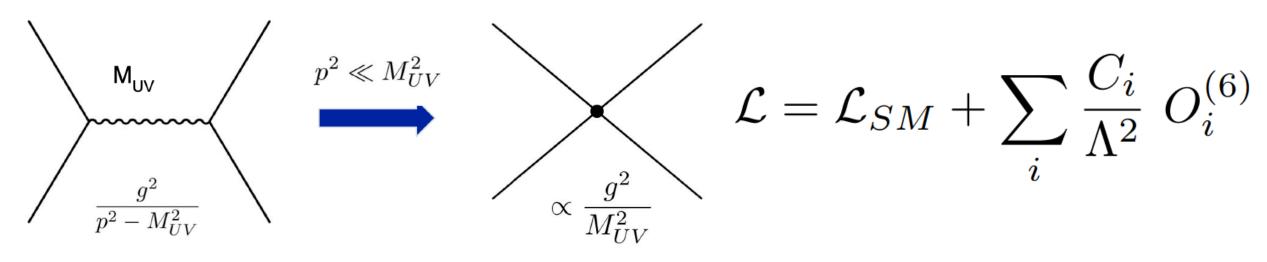
Equivariant neural networks for CP violation

Sergio Sánchez Cruz in collaboration with Marina Kolosova, Giovanni Petrucciani, Clara Ramón, and Pietro Vischia <u>arXiv:2405.13524</u> 10.06.2024

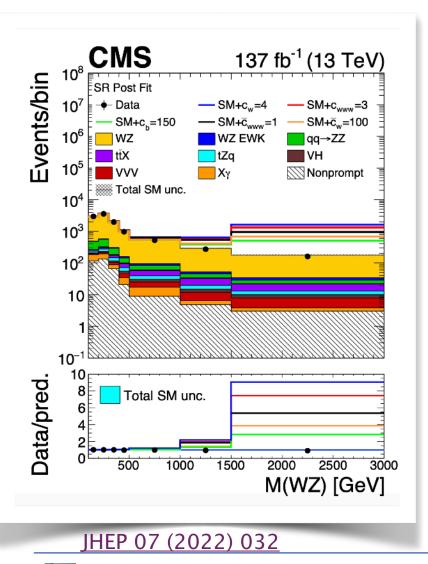
Introduction: SMEFT and CP-violation

- SMEFT is an extension of the SM, adding contributions from high-mass BSM particles
- 1350 CP-even operators, 1149 CP-odd operators
- Plenty of CP-violation sources to study!





EFT at observable level

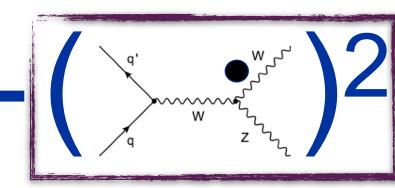


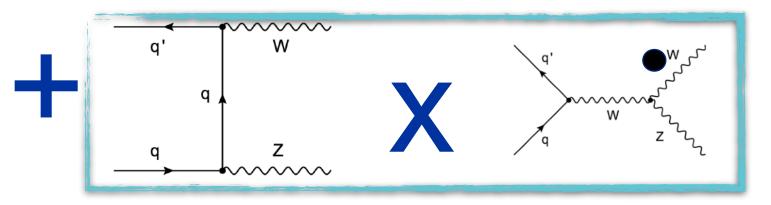
CÉRN

W

Z

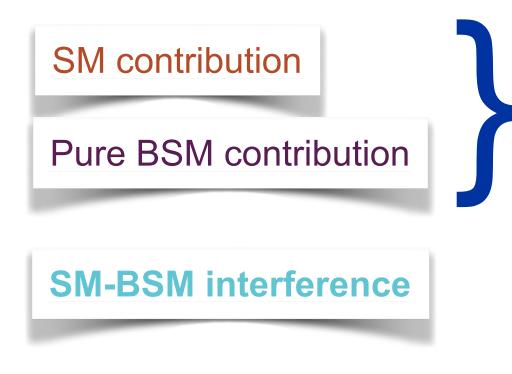
Pure BSM contribution





SM-BSM interference

CP-violating operators



- Mostly CP-invariant
- CP-invariant in e.g. the top/Higgs sectors
- Particularly interesting from the phenomenological standpoint
- Odd under CP transformations
- CP-even observables (most of the LHC cross section measurement program) do not provide sensitivity to the interference
- CP-odd observables are robust against signal mismodeling / backgrounds

The algorithm

- The algorithm builds observables that are equivariant with respect to the CP-symmetry
 - **CP-invariant observables** are useful to discriminate among backgrounds for searches targeting the pure-BSM part
 - **CP-odd observables** are useful to get sensitivity to the interference term
 - Can be generalized to n_1 CP-invariant and n_2 CP-odd components
- A function f: D —> R is odd/even under CP transformation if f(CP(event)) = +/- f(event)
 - The function f(event) = g(event) +/- g(CP(event)) trivially satisfies that
- The space of input features is fully general
 - Can be the kinematics of a fixed set of particles or a particle set
- We take g to be a fully-connected neural network, could be any function

Training and cost function

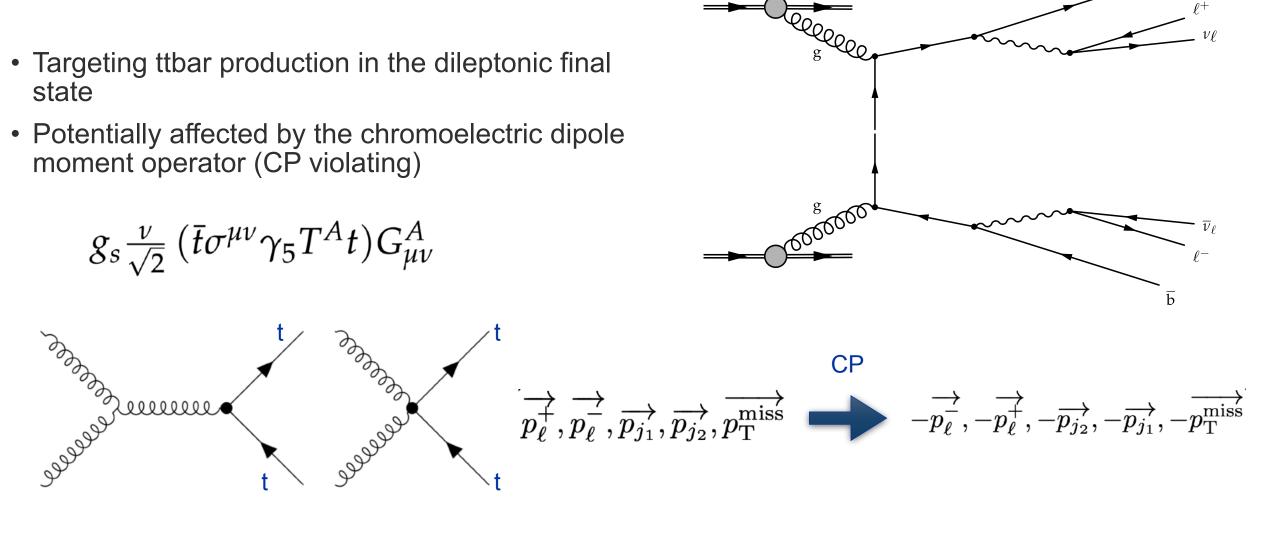
- Method inspired in the <u>SALLY method</u> shown in <u>2401.10323</u>
 - Equivariant networks can also be used with different cost functions
- Training the algorithm on weighted simulations
 - Function of parton-level kinematics
 - Can be used to compute the (non tractable) likelihood ratio

$$\frac{p(d, z|c_1)}{p(d, z|c=0)} = \frac{w_{SM} + cw_{lin} + c^2 w_{quad}}{w_{SM}}$$

 $w(z) = w_{SM}(z) + cw_{int}(z) + c^2 w_{quad}(z)$

- We are interested in the likelihood score at the SM —> sufficient statistic for small values of c
 - Small values of c —> dominated by the interference
- Minimizing the loss function, we obtain a surrogate model of the score

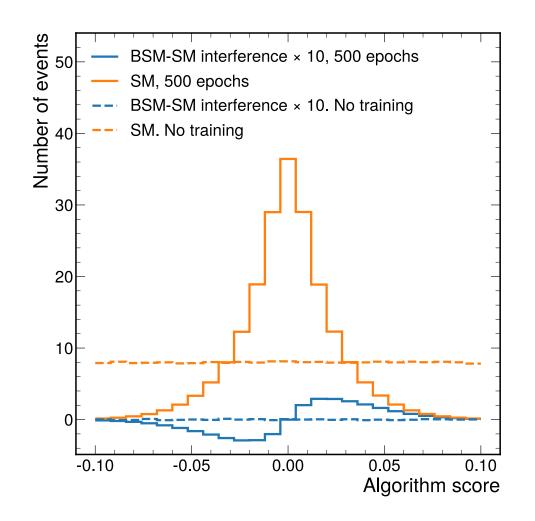
$$L = w_{SM} \left(f(d) - \frac{w_{int}(z)}{w_{SM}(d)} \right)^2$$



Use case: ttbar production

Use case: ttbar production

- Score after the training is a CP-odd observable
 - Symmetric for the SM contribution
 - Any SM-like mismodeling / background will be symmetric by construction
 - Interference contributes constructively for positive values and negatively for negative values
- Equivariance respected even during (or before) training
- Observable is robust even if the training has not converged

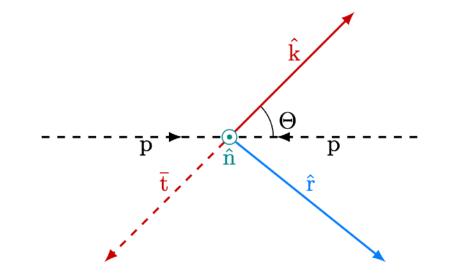


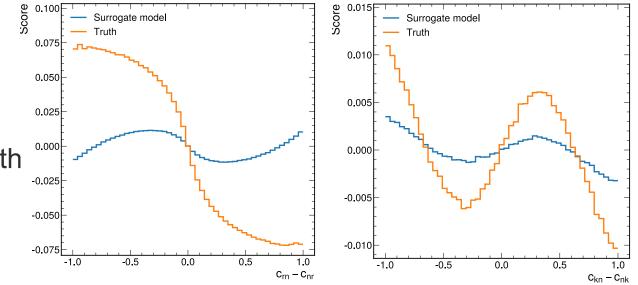
Use case: ttbar production

- The algorithm provides a surrogate model of the score
 - Comparing against the true model (from parton level quantities)
- <u>1508.05271</u> proposes two observables, relying on the reconstruction of the ttbar system, based on angles between leptons and axes

$$C_{rn}-C_{rn} = \cos(|I_r|)\cos(|I_n|)-\cos(|I_n|)\cos(|I_r|)$$

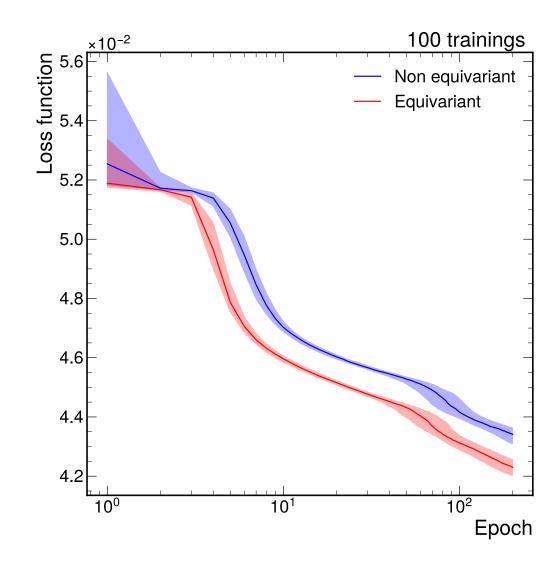
- $c_{kn}-c_{nk} = \cos(I_k)\cos(I_n)-\cos(I_n)\cos(I_k)$
- Partially learning them
 - Limited by the possibility of reconstructing th system





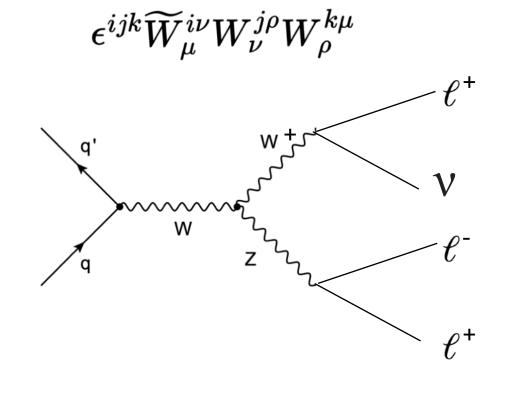
Use case: ttbar production (II)

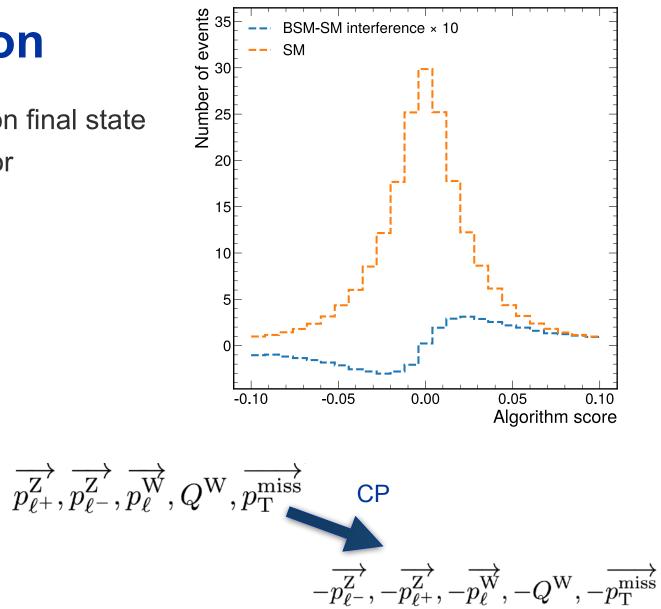
- Imposing equivariance as inductive bias improves the convergence of the model
- Training 100 instances of equivariant and nonequivariant model
- Smaller variance in the first steps of the training
- Overall, between 40 and 300% less iterations needed to achieve the same loss function



Use case: WZ production

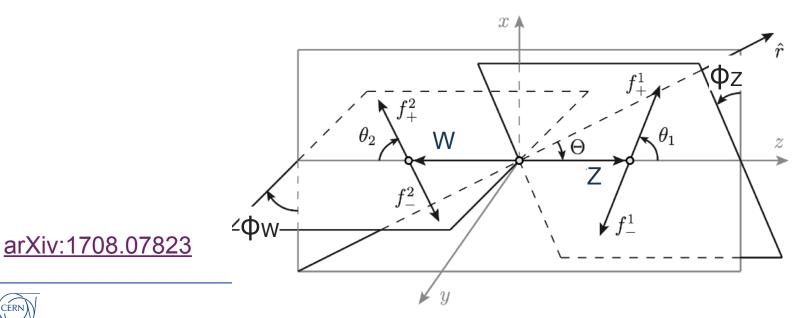
- Targeting WZ production in the three lepton final state
- Potentially affected by the cWtilde operator

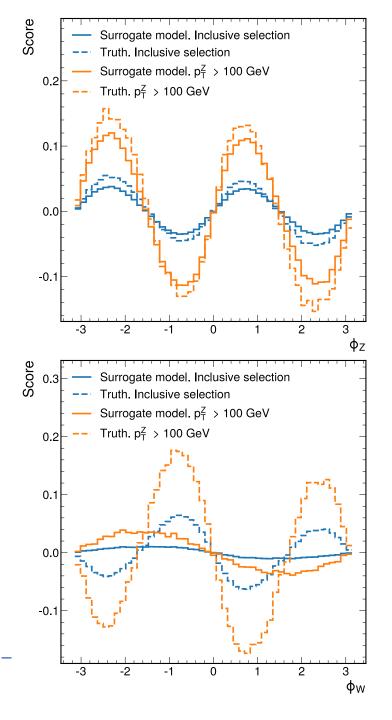




Use case: WZ production (II)

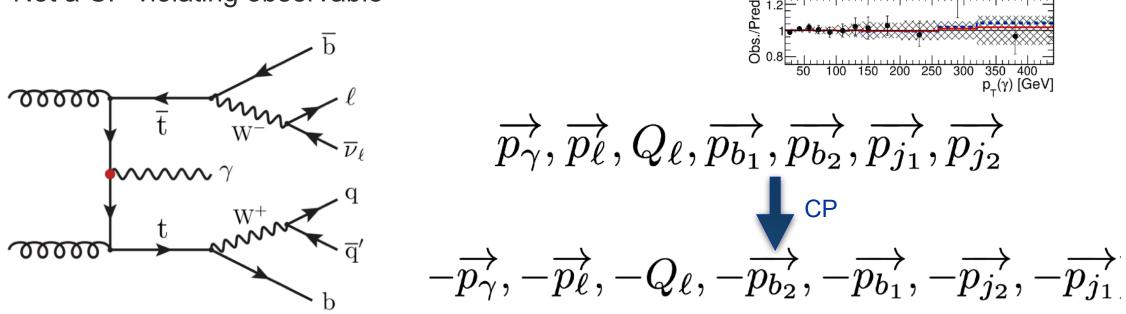
- Checking if the model has learned dedicated observables
 based on spin correlation
- Modulation introduced in ϕ_Z is well captured
- Mostly insensitive to φ_W due to ambiguity in the W decay reconstruction
- More sensitive than dedicated observables, can capture energy growth





Use case: tty production

- Checking $tt\gamma$ in the single lepton channel, affecting $c_{tZ^{\mathsf{I}}}$
- Operator related to $(ar{Q}\sigma^{\mu
 u}t) ilde{H}B_{\mu
 u}$
- Often looked for using the pT of the photon
 - Not a CP-violating observable



CMS

Misid. e

Observed

Events

10

10

10²

137 fb⁻¹ (13 TeV)

Nonprompt γ

 $c_{17} = 0.45 (\Lambda/TeV)^2$

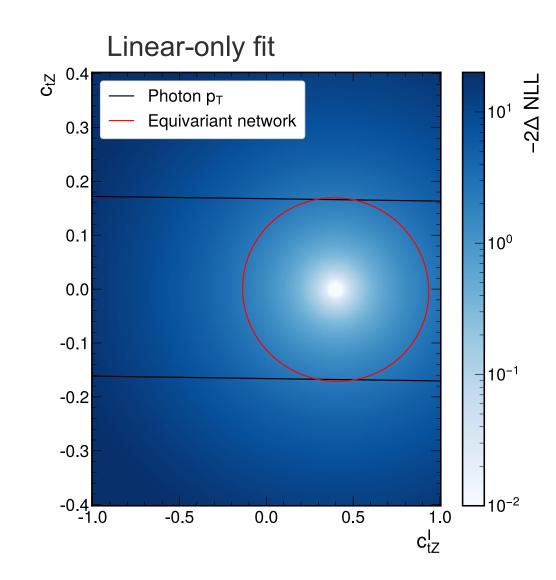
 $--c_{tz} = -0.45 (\Lambda/TeV)^2$ e channel, 3 jets

Other Multijet SM-EFT best fit

 \bigotimes Uncertainty - - - $c_{1_7}^{l} = 0.45 (\Lambda/TeV)^2$

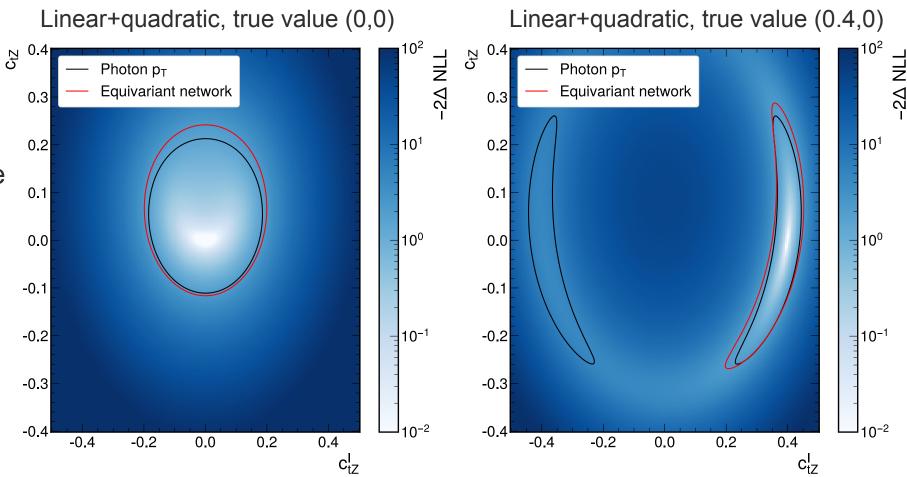
Use case: tty production

- Comparing counting analyses binning on the score of the equivariant network and photon p_T
- Setting expected limits on $c_{tZ^{\text{I}}}$ and c_{tZ}
- Using Poissonian likelihood
 - When considering CP-odd observables systematic uncertainties are suppressed
- When considering linear contributions only, the equivariant network provides sensitivity to ctz^I
 - Photon p_T is completely blind to this operator
 - Both observables give similar sensitivity to c_{tZ}



Use case: tty production

- Assuming the SM, both observables give similar sensitivity
 - Equivariant network targets the interference
- In BSM cases, the equivariant network can disentangle positive and negative ctz^l values



 Overall, the equivariant network is more powerful, even if it has not been trained to captur quadratic effects

Conclusions

- Showcased the properties of equivariant neural networks to search for CP-violation
- Using equivariance as an inductive bias, we obtain robust CP-odd observables
 - Robust observables, regardless of the convergence of the training
 - Better numerical convergence properties than non-equivariant algorithms
- Produced optimal CP-odd observables for ttbar, WZ and ttγ production
 - Observables developed in WZ and ttγ improve the existing state-of-the-art observables
 - Highly relevant for analysis in the top, Higgs and electroweak sectors targetting CP violation, potential for improving any such analysis
- Possible trivial extensions
 - Many of the physics we look at are CP-even —> improving convergence by considering CP-invariant networks?

