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Introduction: SMEFT and CP-violation

A

« SMEFT is an extension of the SM, adding Direct

contributions from high-mass BSM particles production  SMEFT

« 1350 CP-even operators, 1149 CP-odd operators

 Plenty of CP-violation sources to study!
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EFT at observable level
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CP-violating operators

SM contribution * Mostly CP-invariant

- — » CP-invariant in e.g. the top/Higgs
Pure BSM contribution sectors
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* Particularly interesting from the
phenomenological standpoint

 Odd under CP transformations

» CP-even observables (most of the LHC cross section measurement program)
do not provide sensitivity to the interference

» CP-odd observables are robust against signal mismodeling / backgrounds
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The algorithm

« The algorithm builds observables that are equivariant with respect to the CP-symmetry

« CP-invariant observables are useful to discriminate among backgrounds for searches
targeting the pure-BSM part

« CP-odd observables are useful to get sensitivity to the interference term
« Can be generalized to n1 CP-invariant and n2 CP-odd components

« Afunction f: D —> R is odd/even under CP transformation if f(CP(event)) = +/- f(event)
* The function f(event) = g(event) +/- g(CP(event)) trivially satisfies that

 The space of input features is fully general
« Can be the kinematics of a fixed set of particles or a particle set
« We take g to be a fully-connected neural network, could be any function
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Training and cost function

* Method inspired in the SALLY method shown in 2401.10323
« Equivariant networks can also be used with different cost functions

« Training the algorithm on weighted simulations ~ w(z) = wSM(Z)—P-cwmt(Z)-I-CQ’wquad(z)
* Function of parton-level kinematics
» Can be used to compute the (non tractable) likelihood ratio
p(d, z|c1)  Wsp T+ CWip £ Czwquad
p(d, z|c = 0) WS M
« We are interested in the likelihood score at the SM —> sufficient statistic for small values of c
« Small values of c —> dominated by the interference

* Minimizing the loss function, we obtain a surrogate model of the score
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Use case: ttbar production ;
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» Targeting ttbar production in the dileptonic final
state

» Potentially affected by the chromoelectric dipole
moment operator (CP violating)
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Use case: ttbar production

0 I
. i C nL. — BSM-SM interference x 10, 500 epoch |
« Score after the training is a CP-odd observable %50 M. 500 epochs f
» Symmetric for the SM contribution o [~ BsWSWinerierence x 10. Mo training |
o 40~ SM. No training .
 Any SM-like mismodeling / background will be E |
symmetric by construction Z "
* Interference contributes constructively for positive i
values and negatively for negative values ol
« Equivariance respected even during (or before) [
training 1017 ’
 Observable is robust even if the training has not ,
converged or ‘
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Use case: ttbar production

« The algorithm provides a surrogate model of the score

« Comparing against the true model (from parton level
quantities)

« 1508.05271 proposes two observables, relying on the .

reconstruction of the ttbar system, based on angles »

between leptons and axes

Crn-Crn = €OS(I*r)cos(I-n)-cos(I*n)cos(I-)
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Use case: ttbar production (ll)
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— Equivariant

* Imposing equivariance as inductive bias improves
the convergence of the model

Loss function
(@) ]
N
|
|

 Training 100 instances of equivariant and non-
equivariant model

- Smaller variance in the first steps of the training 5.0[-

* Overall, between 40 and 300% less iterations

needed to achieve the same loss function 4.8
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Use case: WZ production

« Targeting WZ production in the three lepton final state
» Potentially affected by the cWtilde operator
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| — Surrogate model. Inclusive selection

|l == Truth. Inclusive selection

Use case: WZ production (ll) T e e

| —— Truth. p% > 100 GeV

Score

» Checking if the model has learned dedicated observables
based on spin correlation
- Modulation introduced in ¢z is well captured "

- Mostly insensitive to ¢ow due to ambiguity in the W decay
reconstruction

- More sensitive than dedicated observables, can
capture energy growth
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Use case: tty production Sthese Eom

» Checking tty in the single lepton channel, affecting ct!
* Operator related to (QO‘”Vt)H BMV

» Often looked for using the pT of the photon

* Not a CP-violating observable

b
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Use case: tty production

Linear-only fit
« Comparing counting analyses binning on the

T — Photon pt
score of the equivariant network and photon pr :

» Setting expected limits on ciz! and ciz
» Using Poissonian likelihood

e When considering CP-odd observables
systematic uncertainties are suppressed

101
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* When considering linear contributions only, the
equivariant network provides sensitivity to ct/!

 Photon pt is completely blind to this operator

» Both observables give similar sensitivity to ciz 04
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Use case: tty production

Linear+quadratic, true value (0,0)

— Photon pr
— Equivariant network

* Assuming the SM, both
observables give similar
sensitivity

« Equivariant network
targets the interference

* In BSM cases, the
equivariant network can
disentangle positive and
negative ciz! values
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e Overall, the equivariant network is more powerful, even if it has not been trained to captur:

quadratic effects
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Conclusions

« Showcased the properties of equivariant neural networks to search for CP-violation
« Using equivariance as an inductive bias, we obtain robust CP-odd observables
* Robust observables, regardless of the convergence of the training
« Better numerical convergence properties than non-equivariant algorithms
* Produced optimal CP-odd observables for ttbar, WZ and tty production
« Observables developed in WZ and tty improve the existing state-of-the-art observables

 Highly relevant for analysis in the top, Higgs and electroweak sectors targetting CP
violation, potential for improving any such analysis

 Possible trivial extensions

« Many of the physics we look at are CP-even —> improving convergence by considering
CP-invariant networks?
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