

CPV and mixing in Charm

Lorenzo Pica
On behalf of the LHCb collaboration

2024 Implications Workshop 23-25 October 2024

Charmed hadrons

Unique role of charmed hadron decays in flavor physics

Only access to mixing and CPV involving **up-type quark**

Mixing and CPV highly suppressed at the SM level

Strong GIM suppression
$$(m_b^{<<}m_t^{})$$
 $(CKM \text{ hierarchy})$ D^0 $CPV \propto \text{Im}\left(\frac{V_{cb}V_{bu}^*}{V_{cs}V_{su}^*}\right) \approx -6 \times 10^{-4}$

High sensitivity to BSM effects with SM null-tests

Past and present experiments

Charmed hadron properties extensively studied in the past decades

Several experiments involved, different facilities

CLEO I.5
CLEO II
CLEO II.V
CLEO III

The LHCb experiment

LHCb has the perfect environment to study charm decays:

- $\sigma(pp \rightarrow charm X) \times L_{inst} (Run 2) \sim 1 MHz$
- large **acceptance** for b/c hadron decays with forward geometry
- precision tracking + vertexing
 - → disentangle signal from background
- high quality particle identification
 - \rightarrow separate different hadrons species

(see previous <u>talk</u> by Patrick for an LHCb overview)

LHCb able to collect hundreds of millions of charm decays

 \rightarrow measure the tiny expected effects

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

What do we measure?

Or its **time-integrated** counterpart

How do we measure A_{CP} ?

Tag the flavor of the decaying hadron

Infer ${\it D}$ flavor exploiting sign of $\pi_{\rm tag}$ or $\mu_{\rm tag}$

Two "nuisance" asymmetries appear:

- D^*/B production asymmetry
 - \rightarrow different probability for D^{*+}/D^{*-} B/anti-B
- final state detection asymmetry
 - \rightarrow asymmetric response of the detector

Experimental access to *raw* asymmetry

$$A_{\mathrm{raw}}(f,t) pprox A_{CP}(f,t) + A_{\mathrm{det}}(f) + A_{\mathrm{prod}}(D)$$

 ${\rm A_{det}}$ and ${\rm A_{prod}}$ disentangled with a "calibration channel" (process with same ${\rm A_{det}}$ and ${\rm A_{prod}}$ as signal)

subtract the two A_{raw} to extract A_{CP}

Direct CPV

Two body decays: $D^0 \longrightarrow h^+h^-$

 $D^0 \rightarrow h^+h^-$ decays golden channel in LHCb \rightarrow exploited in discovery of CPV in Charm decays in 2019

$$\Delta A^{CP} = A^{CP}(K^+K^-) - A^{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$

Phys.Rev.Lett. 122 (2019) 21. 211803

Recent measurement improved precision on $\mathbf{A}_{CP}(\mathbf{K}^+\mathbf{K}^-)$

 \rightarrow disentangle CPV in K^+K^- and $\pi^+\pi^-$

$$a_{K^+K^-}^d = (7.7 \pm 5.7) \times 10^{-4}$$

 $a_{\pi^+\pi^-}^d = (23.2 \pm 6.1) \times 10^{-4}$

Measure U-spin breaking size

 $3.8 \sigma \rightarrow \text{first evidence of charm CPV in a single channel}$

Phys. Rev. Lett. 131 (2023) 21.091802

Multibody decays: $D^+ \longrightarrow K^+ K^- \pi^+$

Strong-phase variation across Dalitz plot

Possible local asymmetries enhancement

 $D^+ \rightarrow K^+ K^- \pi^+$ is the singly Cabibbo-suppressed decay with largest $BF \rightarrow$ diagrams similar to $D^0 \rightarrow K^+ K^-$ - **similar A_{CP} size?**

We measure A_{CP} around K^* and ϕ resonances:

$$A_{C\!P|S} = \frac{1}{2} \left[\left(\Delta A_{\mathrm{raw}}^{\mathrm{top\text{-}left}} + \Delta A_{\mathrm{raw}}^{\mathrm{bottom\text{-}right}} \right) - \left(\Delta A_{\mathrm{raw}}^{\mathrm{top\text{-}right}} + \Delta A_{\mathrm{raw}}^{\mathrm{bottom\text{-}left}} \right) \right]$$

 A_{CP} expected to change sign crossing resonance vertically and horizontally Phys. Rev. D 78, 072003

$$A_{CP|S}^{\phi\pi^{+}} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$$
$$A_{CP|S}^{\overline{K}^{*0}K^{+}} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$$

Most precise search through phase space of a multibody decay

Multibody decays: $D^+ \longrightarrow K^+ K^- \pi^+$

Simultaneous model-independent search \rightarrow any difference between D^+ and D^- amplitudes across all Dalitz plot

CP asymmetry significance measured in Dalitz-plot bins

$$\Delta A_{CP}^i = A_{
m raw}^{i,S} - A_{
m raw}^{i,C} - \Delta A_{
m raw}^{
m global} \qquad \mathcal{S}_{\Delta_{CP}}^i = rac{\Delta A^i}{\sigma_{\Delta A^i}}$$

Hypothesis of no local CP violation is tested with

$$\chi^2(\mathcal{S}_{\Delta_{CP}}) = \sum_i^{N_{bins}} (\mathcal{S}_{\Delta_{CP}}^i)^2$$

p-value for CP conservation hypothesis is 8.1%

No CPV evidence for both methods:

- sub-10⁻³ precision reached $\sim \sigma(A_{CP}(K^+K^-))$
- $A_{CP}(K^+K^-)$ vs $A_{CP}(\pi^+\pi^-)$ suggesting a larger CPV size in $\pi^+\pi^-$ diagram
- \rightarrow similar search with $D^+ \rightarrow \pi^+ \pi^- \pi^+$ final state ongoing

Mixing and time-dependent CPV

D^0 mixing in a nutshell

 D^0 time evolutions described by

$$i\frac{\partial}{\partial t} \left(\frac{D^0(t)}{D^0(t)} \right) = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \left(\frac{D^0(t)}{D^0(t)} \right)$$
 Off shell transitions Sensitive to new physics On shell transitions

Mixing parameters

$$x_{12} \equiv 2|M_{12}|/\Gamma$$

CPV in mixing by mixing phases

$$\phi_2^M \sim \arg\left(M_{12}\right)$$

$$\phi_2^{\Gamma} \sim \arg\left(\Gamma_{12}\right)$$

 $y_{12} \equiv |\Gamma_{12}|/\Gamma$

Mixing with $D^0 \longrightarrow K^+ \pi^-$ decays

New mixing + CPV measurement with full Run 2 dataset

Measure ratio between:

-
$$D^{*+} \rightarrow D^0 (\rightarrow K^+ \pi^-) \pi^+ \rightarrow \text{Wrong Sign (WS)}$$

-
$$D^{*+} \rightarrow D^0 (\rightarrow K^-\pi^+)\pi^+ \rightarrow \text{Right Sign (RS)}$$

(promptly produced D^{*+})

Separately measured for the two decay configurations:

$$R_{K\pi}^+(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}^0(t) \to K^+\pi^-)}$$

$$R_{K\pi}^{+}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \qquad \qquad R_{K\pi}^{-}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$

Mixing with $D^0 \longrightarrow K^+ \pi^-$ decays

 $R_{\kappa_{\pi}}$ time evolution is

$$R_{K\pi}^{\pm}(t) \approx R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t + (c_{K\pi}' \pm \Delta c_{K\pi}') t^{2}$$

Mixing observables

$$c_{\scriptscriptstyle K\pi} \simeq y_{12}\cos\phi_{\scriptscriptstyle K\pi}^{\Gamma}\cos\delta_{\scriptscriptstyle K\pi} - x_{12}\cos\phi_{\scriptscriptstyle K\pi}^{M}\sin\delta_{\scriptscriptstyle K\pi}$$

$$c'_{_{K\pi}} \simeq \frac{1}{4} \left(x_{12}^2 + y_{12}^2 \right)$$

Strong phase difference $\delta_{K_{\pi}} = 10^{\circ} \pm 3^{\circ}$ LHCb-CONF-2022-002, Phys. Rev. D 86, 112001, Eur. Phys. J. C 82, 1009 (2022)

CPV observables

$$\mathcal{A}_{K\pi} = a_{WS}^d + a_{RS}^d$$

$$\Delta c_{_{K\pi}} \simeq x_{12} \phi_{_{K\pi}}^{M} \cos \delta_{_{K\pi}} + y_{12} \phi_{_{K\pi}}^{\Gamma} \sin \delta_{_{K\pi}}$$

$$\Delta c'_{\scriptscriptstyle K\pi} \simeq \frac{1}{2} x_{12} y_{12} (\phi^M_{\scriptscriptstyle K\pi} - \phi^\Gamma_{\scriptscriptstyle K\pi})$$

Mixing - double-tagged decays

(In preparation)

 au_{tag}

Mixing + CPV parameters performed by LHCb also with double-tagged (DT) $D^0 \rightarrow K^+\pi^-$

Just approved!

Complementary to measurement with prompt sample

> Larger acceptance at lower decay time

Different systematic uncertainties

 D_0

Double-tagged results

WS/RS ratio is measured as before (slightly different parametrization)

$$R^{\pm}(t) = \frac{N_{WS}^{\pm}(t)}{N_{RS}^{\pm}(t)} = R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{x'^{2\pm} + y'^{\pm 2}}{4} \left(\frac{t}{\tau}\right)^2$$

	Value	Statistical	Systematic
	 Mixi	$\operatorname{ng} \operatorname{only}$	↓
$R_D [10^{-3}]$	3.47	0.06	0.01
$y' [10^{-3}]$	5.84	1.62	0.16
$(x')^2 [10^{-5}]$	0.04	12.25	1.06
	All CP	V allowed	
$R_D^+ [10^{-3}]$	3.55	0.08	0.02
$y'^{+} [10^{-3}]$	3.56	2.23	0.26
$(x'^+)^2 [10^{-5}]$	10.86	16.17	1.35
$R_D^- [10^{-3}]$	3.39	0.08	0.02
y'^{-} [10 ⁻³]	8.11	2.34	0.28
$(x'^{-})^{2} [10^{-5}]$	-11.29	18.55	1.28

(Results with prompt sample parametrization will also be added to the paper)

<u>LHCb-PAPER-2024-044</u> (In preparation)

Charm + γ combination

CKM angle γ , Charm mixing and CPV parameters measurements included in a single fit

 \rightarrow improves precision on single observables exploiting full information

Previous combinations
LHCb-CONF-2022-003
JHEP 12 (2021) 141

New update to the combination just published (LHCb-CONF-2024-004)

 \rightarrow 9 new LHCb measurements included (2023-2024) (Double-tagged $D^0 \rightarrow K^+\pi^-$ not included)

$a_{DCS}^d = 0$ constraint

Novelty of latest update is a_{DCS}^d = 0 constraint application

Expected CPV for DCS within SM is $0 \rightarrow$ only one amplitude contributing to decay

Fit is repeated applying external constraint to $\,a_{DCS}^d$ \rightarrow improved sensitivity to charm CPV observables

$$\begin{split} x &= (0.41 \pm 0.05)\% \\ y &= (0.619 \pm 0.021)\% \\ |q/p| &= 0.984^{+0.014}_{-0.015} \\ \phi &= (-1.6^{+1.1}_{-1.2})^{\circ} \\ a^d_{\pi^+\pi^-} &= (24 \pm 6) \times 10^{-4} \\ a^d_{K^+K^-} &= (9 \pm 5) \times 10^{-4} \\ \delta^{K\pi}_D &= (191.4 \pm 2.4)^{\circ} \end{split}$$

LHCb upgrade

Data hunger

All reported measurements are **statistically limited**

Larger dataset to improve precision

Increase data acquisition rate

LHCb went through a major upgrade (*JINST* 19 (2024) 05, P05065):

- **x5** instantaneous luminosity increase wrt Run 2
- increase trigger efficiency (more signal events with same data)

Trigger efficiency for Charm decays limited in Run 2 by first hardware-level trigger thresholds (lower p_T wrt Beauty)

Upgraded trigger performances

We started taking data at nominal luminosity with upgraded system

 \rightarrow expected improvements verified on data

Major **trigger efficiency increase** for hadronic final-state charm decays

Variety of channels involved:

-
$$D^0 \rightarrow KK$$
, $D^0 \rightarrow \pi\pi \rightarrow \Delta A_{CP}$, $A_{CP}(KK)$, $A_{CP}(\pi\pi)$

-
$$D^+_{(S)} \rightarrow 3h \rightarrow \text{multibody CPV}$$

-
$$D^0 \rightarrow K\pi \rightarrow \text{mixing}$$

-
$$D^0 \rightarrow K_5^0 \pi \pi \rightarrow \text{CPV} + \text{mixing Phys. Rev. Lett. 127 (2021) 111801}$$

First level K_S^0 triggering

 K_S^0 and K_S^0 pairs selections at first trigger level with novel system

 \rightarrow commissioned and fully operational

Increase K_S^0 final state trigger efficiency

$$-D^0 \longrightarrow K_S^0 K_S^0 \longrightarrow A_{CP} (K_S^0 K_S^0)$$

 \rightarrow limited yield in Run 2 because of trigger

Phys. Rev. D 104, L031102 (2021)

- $D^0 \rightarrow K_S^0 \pi \pi \rightarrow \text{select decays w/o requirement on } \pi \text{ pair}$

→ help reduce systematic due to efficiency variation across Dalitz plot (biggest in previous analysis)

Phys. Rev. Lett. 127 (2021) 111801

LHCB-FIGURE-2024-013

Summary

LHCb on the front line of Charm physics since years:

discovery of Charm CPV in 2019 with ΔA_{CP}

World-leading results still coming from **Run 2** (2015-18) data analysis:

- Most precise search in multibody phase space with $D^+ \rightarrow K^+ K^- \pi^+$
- two measurements of mixing + CPV parameters with $D^0 \rightarrow K^+ \pi^-$
 - \rightarrow x1.6 factor improvement wrt previous measurement

Several **other activities ongoing** not mentioned because of time constraints - a couple of examples:

- material effects on D^0 mixing (see Alexey's dedicated <u>talk</u> in this session)
- feasibility studies for $A_{CP}(K^+K^-)$ with different different calibration channel
- search for local CPV in other multibody D decays (as $D^+ \rightarrow \pi^+ \pi^- \pi^+$)
- D^+ , D_S^+ , D^0 meson-antimeson production asymmetry with Run 3 data

Prospects

A lot more data needed to reach desired sensitivity $\sim 10^{-4}$ - 10^{-3}

 \rightarrow LHCb is already at work on this

2024 datataking just concluded (with upgraded detector and trigger)

9.6 fb⁻¹ collected in 2024

 \rightarrow huge amount of data ready to be analyzed

Scoping document for Upgrade 2 just sent to the LHCC: (Framework TDR is <u>CERN-LHCC-2021-012</u>)

- up to **x7.5** instantaneous luminosity increase wrt Run 3
- start taking data in Run 5 (~2036)
- \rightarrow LHCb U2 is the only experiment able to reach the precision of SM predictions for time-dependent CPV

A new season of precision measurements is on the way

BACKUP SLIDES

Difficult predictions

Large SM effects suppression comes with a major side effect

Mixing proceeds through:

Short distance - perturbative

Long distance - non-perturbative

Long distance contributions relevant because of GIM suppression

Non-perturbative contributions extremely difficult to determine (see Felix's talk right after this for most recent progresses in lattice QCD)

Providing a precise prediction of Charm mixing and CPV is extremely challenging

Discovery of CP violation in Charm decays

Can ΔA_{CP} be explained by SM?

Yes, according to some authors

JHEP 05 (2012) 140, JHEP 07 (2019) 020,

Phys. Rev. D 100 (2019) 093002

No, according to others

<u>JHEP 07 (2019) 161 JHEP 12 (2019) 104,</u>

<u>Phys. Rev. D 101 (2020) 115006</u>

Additional A_{CP} measurements in other charm decays crucial at this stage

LHCb can significantly contribute to this:

- data collected in Run 1-2 + Run 3 with upgraded system (more later)

$D^+ \longrightarrow K^+ K^- \pi^+$ diagrams

$$A_{CP}(K^+K^-) \text{ with } D^0 \longrightarrow K_S^0 \pi^+ \pi^-$$

Previous measurement extracted $A_{CP}(K^+K^-)$ exploiting two independent methods

$$\mathcal{A}^{CP}(K^-K^+) = A(K^-K^+) - A(K^-\pi^+) + A(K^-\pi^+\pi^+) - A(\overline{K}^0\pi^+) + A(\overline{K}^0)$$

$$\mathcal{A}^{CP}(K^-K^+) = A(K^-K^+) - A(K^-\pi^+) + A(\phi\pi^+) - A(\overline{K}^0K^+) + A(\overline{K}^0)$$

New methods exploits $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ as calibration channel

Extract $A_{CP}(K^+K^-)$ with:

$$\begin{split} \mathcal{A}^{CP}(K^{+}K^{-}) &= \mathcal{A}^{raw}(K^{+}K^{-}) - \mathcal{A}^{raw}(K^{0}_{S}\pi^{+}\pi^{-}) = \\ &= \mathcal{A}^{CP}(K^{+}K^{-}) + \mathcal{A}^{prod}(D^{*+}) + \mathcal{A}^{det}(\pi_{tag}) - \mathcal{A}^{CP}(K^{0}_{S}\pi^{+}\pi^{-}) - \mathcal{A}^{prod}(D^{*+}) - \mathcal{A}^{det}(\pi_{tag}) - \mathcal{A}^{det}(K^{0}) \end{split}$$

Expected $< 1 \times 10^{-4}$

Asymmetric kinematics of $\pi^+\pi^-$ pair in $K_S^0\pi^+\pi^-$ decay \rightarrow weight candidates to make it symmetric

Well understood - can be computed and subtracted Already done here PRL 131.091802

Combine the two results

Δ Y with $D^0 \longrightarrow \pi^{\dagger} \pi^{-} \pi^{0}$

First ΔY measurement performed exploiting $D^0 \to \pi^+ \pi^- \pi^0$ decays ($D^0 \to K^- \pi^+ \pi^0$ exploited as calibration channel)

Full Run 1 + Run 2 statistics analyzed \rightarrow 7.7 fb⁻¹

Diluted ΔY measured in multibody decays:

$$A_{CP}(f_{CP},t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\bar{D}^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\bar{D}^0 \to f_{CP}}(t)} \approx a_{f_{CP}}^{\rm dir} + \Delta Y_{f_{CP}} \frac{t}{\tau_{D^0}}$$

$$\Delta Y_f^{\text{eff}} = (2F_+^f - 1)\Delta Y, \qquad F_+^{\pi\pi\pi} = 0.973 \pm 0.017$$
Phys.Lett. B747 (2015) 9

 \rightarrow small dilution in case of $\pi\pi\pi$ final state

Results are:

$$\Delta Y_{\pi\pi\pi}^{\text{eff}} = (-1.2 \pm 6.0 \pm 2.3) \times 10^{-4}$$
$$\Delta Y = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-4}$$

- Data

Compatible with previous world average: $\Delta Y = (0.9 \pm 1.1) \times 10^{-4}$

D^0 mixing notation

$$\delta = \delta_D^{K\pi} - \pi = -\Delta_{K^-\pi^+}$$

$$c_{K\pi} \simeq y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$

$$\simeq y_{12} \cos \phi_{K\pi}^{\Gamma} \cos \delta_{K\pi} - x_{12} \cos \phi_{K\pi}^{M} \sin \delta_{K\pi}$$

$$\simeq y_{CP} \cos \delta_{K\pi} - x_{CP} \sin \delta_{K\pi}$$

$$\simeq \frac{1}{2} (y'^{+} + y'^{-}),$$

$$\Delta c_{\kappa\pi} \simeq (y\cos\delta_{\kappa\pi} - x\sin\delta_{\kappa\pi}) \left(\left| \frac{q}{p} \right| - 1 \right) - (x\cos\delta_{\kappa\pi} + y\sin\delta_{\kappa\pi}) \phi_{\kappa\pi}^{\lambda}$$

$$\simeq x_{12}\phi_{\kappa\pi}^{M}\cos\delta_{\kappa\pi} + y_{12}\phi_{\kappa\pi}^{\Gamma}\sin\delta_{\kappa\pi}$$

$$\simeq \Delta y\cos\delta_{\kappa\pi} - \Delta x\sin\delta_{\kappa\pi},$$

$$\simeq \frac{1}{2}(y'^{+} - y'^{-}),$$

$$egin{aligned} c'_{_{K\pi}} &\simeq rac{1}{4} \left(x^2 + y^2
ight) \ &\simeq rac{1}{4} \left(x_{12}^2 + y_{12}^2
ight) \ &\simeq rac{1}{4} (y_{_{C\!P}}^2 + x_{_{C\!P}}^2) \ &\simeq rac{1}{8} (y'^{2+} + x'^{2+} + y'^{2-} + x'^{2-}) \end{aligned}$$

$$egin{align} \Delta c'_{_{K\pi}} &\simeq rac{1}{2}(x^2+y^2) \left(\left| rac{q}{p}
ight| - 1
ight) \ &\simeq rac{1}{2} x_{12} y_{12} (\phi^M_{_{K\pi}} - \phi^\Gamma_{_{K\pi}}) \ &\simeq rac{1}{2} (y_{_{C\!P}} \Delta y_{_{K\pi}} + x_{_{C\!P}} \Delta x_{_{K\pi}}) \ &\simeq rac{1}{8} (y'^{2+} + x'^{2+}) - rac{1}{8} (y'^{2-} - x'^{2-}) \ \end{pmatrix}$$

DT-prompt results comparison

$A_{CP}(KK)$ and mixing correlation

Ratios measured on data exploiting *KK* as calibration sample:

$$\tilde{R}_{K\pi}^{+}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \frac{\Gamma(\overline{D}^{0}(t) \to K^{+}K^{-})}{\Gamma(D^{0}(t) \to K^{+}K^{-})}$$

$$\tilde{R}_{K\pi}^{-}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})} \frac{\Gamma(D^{0}(t) \to K^{+}K^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}K^{-})}$$

Direct CPV term measured on data is

10% improvement in a_{KK}^d precision when constraining a_{DCS}^d , a_{CF}^d = 0

Prompt + DT combination

Combination of prompt+DT results, no CPV:

R_D	$(343.7 \pm$	$1.9) \times 10^{-5}$	R_D	$(3.44 \pm 0.02) \times 10^{-3}$
$c_{K\pi}$	$(50.7 \pm$	$3.3) \times 10^{-4}$	y'	$(5.08 \pm 0.33) \times 10^{-3}$
$c'_{K\pi}$	$(13.7 \pm$	$3.6) \times 10^{-6}$	$(x')^2$	$(2.87 \pm 1.75) \times 10^{-5}$

CPV allowed:

Data hunger

All reported measurements are **statistically limited**

Larger dataset to improve precision

Increase data acquisition speed

LHCb went through a major upgrade (*JINST* 19 (2024) 05, P05065):

- **x5** instantaneous luminosity increase (more data in the same period)
- increase trigger efficiency (more signal events with same data)

Charm decays significantly benefit from this \rightarrow lower efficiency wrt B in Run 2

Mixing + CPV parameters performed by LHCb also with doubly-tagged $D^0 \rightarrow K^+\pi^-$ (just approved!)

Complementary to measurement with prompt sample:

→ lower decay time sensitivity + different systematic uncertainties

WS/RS ratio is measured as before (slightly different parametrization)

$$R^{\pm}(t) = \frac{N_{WS}^{\pm}(t)}{N_{PS}^{\pm}(t)} = R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{x'^{2\pm} + y'^{\pm 2}}{4} \left(\frac{t}{\tau}\right)^2$$

	Value	Statistical	Systematic			
	ţ					
$R_D [10^{-3}]$	3.47	0.06	0.01			
$y' [10^{-3}]$	5.84	1.62	0.16			
$(x')^2 [10^{-5}]$	0.04	12.25	\parallel 1.06			
All CPV allowed						
$R_D^+ [10^{-3}]$	3.55	0.08	0.02			
$y'^{+} [10^{-3}]$	3.56	2.23	0.26			
$(x'^+)^2 [10^{-5}]$	10.86	16.17	1.35			
$R_D^- [10^{-3}]$	3.39	0.08	0.02			
y^{-} [10 ⁻³]	8.11	2.34	0.28			
$(x'^{-})^{2} [10^{-5}]$	-11.29	18.55	1.28			

Introduction

Standard Model (SM) is theoretical description of particle physics since the '70s

Many extremely precise predictions - a couple of examples:

- $BR(B_S^{\ 0} \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ Phys. Rev. Lett. 112 (2014) 101801
- $(g-2)/2 = 116591810(43) \times 10^{-11}$ Phys. Rept. 887 (2020) 1-166

Huge efforts to "break" SM \rightarrow find beyond Standard Model effects - **New Physics**

High precision measurements are a crucial test of SM

- \rightarrow sensitive to possible BSM contributions
- → access large energy scales through off-shell interactions

Flavor Physics provides several extremely sensitive SM tests