Anomalies in Hadronic B-meson decays

(Talk based on 2311.18011 to appear in Phys. Rev. Lett)

Bhubanjyoti Bhattacharya (bbhattach@ltu.edu)

Lawrence Technological University

LHCb Implications Workshop 2024 CERN, Geneva October 23, 2024 bit.ly/cern1024

Why hadronic B decays?

- ullet Goal: explore relations among various two body B o PP decays $(P=\pi,K)$
- ullet Framework: Approximate flavor-SU(3) symmetry o u,d,s much lighter than b
- Finding: Global fits indicate SU(3) is broken at level much larger than expected
- ullet Hadronic anomaly \leftrightarrow unusually large SU(3) breaking
- ullet Additional work not covered (indicate hadronic puzzles in $B^0_s o K^0\overline K^0$):
 - ► Grossman et. al, 2407.13506
 - ► Amhis et. al, 2212.03874

Motivation: Study Weak Interactions

- ullet Direct measurement of γ
 - GLW, ADS, GGSZ methods
- Theoretically clean, but statistics limited
- ullet Theoretically clean \Rightarrow
 - more observables than parameters
 - ightharpoonup obtain γ from fits
 - no theory input for hadronic parameters
- Limited experimental precision
 - lacktriangle Current $\Delta\gamma\sim7^\circ$ (LHCb-CONF-2022-003)
 - ▶ Long term LHCb target $\Delta \gamma \sim 1-2^\circ$

Only tree diagrams interfere in the SM Highly-suppressed loop (box diagrams)

Brod and Zupan (2013)

- Unitarity triangle: $\gamma = \pi \alpha \beta$
- Additional methods? Include loops
- Crosschecks of the CKM paradigm

Alternative methods for γ : decays with tree + loop

• Consider the decay $B_d^0 \to \pi^+\pi^-$: $\mathcal{A}(B_d^0 \to \pi^+\pi^-) = -Te^{i\gamma} - P_{tc}$

•
$$\mathcal{A}(B \to f) = |a| + |b| e^{i\delta} e^{i\phi} \quad \to \quad \Gamma \propto |\mathcal{A}|^2$$

$$\overline{\mathcal{A}}(\overline{B} \to \overline{f}) = |a| + |b| \, e^{i\delta} \, e^{-i\phi} \quad \to \quad \overline{\Gamma} \propto |\overline{\mathcal{A}}|^2$$

– 4 parameters: 2 magnitudes (|a|,|b|), 1 strong phase (δ), 1 weak phase (ϕ)

•
$$\mathcal{A}(B \to f) = |a| + |b| e^{i\delta} e^{i\phi} \to \Gamma \propto |\mathcal{A}|^2$$

 $\overline{\mathcal{A}}(\overline{B} \to \overline{f}) = |a| + |b| e^{i\delta} e^{-i\phi} \to \overline{\Gamma} \propto |\overline{\mathcal{A}}|^2$

- 4 parameters: 2 magnitudes (|a|, |b|), 1 strong phase (δ), 1 weak phase (ϕ)

- $f \neq \overline{f}$ Only 2 observables
- ullet Measure Γ and $\overline{\Gamma}$; or

$${\cal B}_{
m CP} \; = \; rac{\Gamma + \overline{\Gamma}}{2} \; {
m and} \; A_{
m CP} \; = \; rac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}}$$

•
$$\mathcal{A}(B \to f) = |a| + |b| e^{i\delta} e^{i\phi} \to \Gamma \propto |\mathcal{A}|^2$$

 $\overline{\mathcal{A}}(\overline{B} \to \overline{f}) = |a| + |b| e^{i\delta} e^{-i\phi} \to \overline{\Gamma} \propto |\overline{\mathcal{A}}|^2$

– 4 parameters: 2 magnitudes (|a|,|b|), 1 strong phase (δ), 1 weak phase (ϕ)

- $ullet f
 eq \overline{f}$ Only 2 observables
- ullet Measure Γ and $\overline{\Gamma}$; or

$${\cal B}_{
m CP} \; = \; rac{\Gamma + \overline{\Gamma}}{2} \; {
m and} \; A_{
m CP} \; = \; rac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}}$$

• $f = \overline{f}$: same 2 observables

•
$$\mathcal{A}(B \to f) = |a| + |b| e^{i\delta} e^{i\phi} \to \Gamma \propto |\mathcal{A}|^2$$

 $\overline{\mathcal{A}}(\overline{B} \to \overline{f}) = |a| + |b| e^{i\delta} e^{-i\phi} \to \overline{\Gamma} \propto |\overline{\mathcal{A}}|^2$

– 4 parameters: 2 magnitudes (|a|,|b|), 1 strong phase (δ), 1 weak phase (ϕ)

- \bullet $f
 eq \overline{f}$ Only 2 observables
- ullet Measure Γ and $\overline{\Gamma}$; or

$${\cal B}_{
m CP} \; = \; rac{\Gamma + \overline{\Gamma}}{2} \; {
m and} \; A_{
m CP} \; = \; rac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}}$$

- \bullet $f=\overline{f}$: same 2 observables
- ullet Additional observable(s) from $B ext{-}\overline{B}$ mixing
- S_{CP} from $\frac{\Gamma(t) \overline{\Gamma}(t)}{\Gamma(t) + \overline{\Gamma}(t)}$

U-spin in hadronic B decays

Weak-phase info using U-spin

- R. Fleischer, hep-ph/9903456 (Phys. Lett. B 459 (1999) 306)
- 4 observables in $B_s \to K^+K^-$ and $B_d \to \pi^+\pi^-$: $C_{KK}, S_{KK}, C_{\pi\pi}, S_{\pi\pi}$
- ullet |q/p|pprox 1 for $B^0_{d,s}$ (can check from semileptonic B decays); $rg(q_s/p_s)pprox 2eta_s \ o$ from $B_s o J/\Psi\phi$
- ullet Hadronic parameters same for both decays: $(|b/a|,\delta) \leftarrow 2$ parameters
- ullet Weak decay parameters: $\gamma, eta_d \leftarrow \mathsf{Up}$ to 2 parameters
- ullet $C_{\pi\pi}, C_{KK}, S_{KK}$ sufficient to determine $\gamma+2$ hadronic parameters
- Use $S_{\pi\pi}$ to also get β_d
- Data unavailable at the time

The strategies proposed in this paper are very interesting for "second-generation" B-physics experiments performed at hadron machines, for example LHCb, where the very

Recent LHCb measurement and theory progress

- LHCb measurement of CP Asymmetries in $B_{s(d)} \rightarrow K^+K^-(\pi^+\pi^-)$: 1805.06759, 2012.05319
- Theory investigation of U-spin: Nir, Savoray, and Viernik, 2201.03573

•
$$C_{KK} = 0.172 \pm 0.031$$
, $S_{KK} = 0.139 \pm 0.032$, $C_{\pi\pi} = -0.32 \pm 0.04$, $S_{\pi\pi} = -0.64 \pm 0.04$

- Use β_d $(B_d \to J/\Psi K_s)$, β_s $(B_s \to J/\Psi \phi)$, γ $(B \to DK)$
- ullet Find hadronic parameters for both decays \Rightarrow test U-spin
- $ullet rac{|b_s/a_s|}{|b_d/a_d|}=1.07$, $|a_s/a_d|=1.26\sim 30\%$ U-spin breaking $\mathcal{O}(m_s/\Lambda_{
 m QCD})\sim 30\%, f_K/f_\pi-1\sim 20\%$
- Result: NP + different orders of breaking at play

Is that it for U-Spin?

- What about other U-spin related decays? BB with others, 2211.06994
- Consider U-spin SU(2) subgroup of flavor SU(3)
 - \rightarrow quark doublet: (d,s); \rightarrow antiquark doublet: $(\bar{s},-\bar{d})$;
 - \rightarrow meson doublets: $(\pi^-,K^-), \ \ (K^+,\pi^+), \ \ (B^0_d,B^0_s)$
- Initial state: B doublet; Final state: Doublet \times Doublet = Singlet(0) + Triplet(1)
- ullet 6 decays possible: 3 decays each $\Delta S=0(b o d),1(b o s)$; 4 U-spin RMEs

Decay	Representation	$\mathcal{B}_{ ext{CP}}$	C_{CP}	$S_{\rm CP}$
$B_d^0 \to \pi^+ \pi^-$	$M_{1d}^{1/2} + M_{0d}^{1/2}$	$\sim 10^{-6}$	✓	✓
$B_d^0 \to K^+ K^-$	$M_{1d}^{1/2} - M_{0d}^{1/2}$	$\sim 10^{-8}$?	?
$B_s^0 o \pi^+ K^-$	$2 \ M_{1d}^{1/2}$	$\sim 10^{-6}$	✓	
$B_s^0 \to K^+K^-$	$M_{1s}^{1/2} + M_{0s}^{1/2}$	$\sim 10^{-5}$	✓	1
$B_s^0 o \pi^+\pi^-$	$M_{1s}^{1/2} - M_{0s}^{1/2}$	$\sim 10^{-7}$?	?
$B_d^0 \to K^+\pi^-$	$2 \ M_{1s}^{1/2}$	$\sim 10^{-5}$	✓	

- ullet Each $M_{xq}^{1/2}$ has two parts
- $\bullet \ M_{xq}^{1/2} = V_{ub}^* V_{uq} T_q^x + V_{cb}^* V_{cq} P_q^x$
- 12 measurements
- 4 yet to be measured
- 2 amplitude triangles: $\pi^+\pi^- + K^+K^- = \pi K$

Hints of U-spin breaking

- $\Delta S = 0 \Rightarrow q = d$, $\Delta S = 1 \Rightarrow q = s$
 - ightarrow 7 hadronic parameters $\leftarrow T_q^x, P_q^x$ with x=0,1
 - \rightarrow 6 measurements available X
 - ightarrow 2 future measurements $\Rightarrow \gamma$ can be extracted with eta_q from independent source
- ullet Apply U-spin! \Rightarrow 8 parameters (γ + 7 hadronic for both $\Delta S=0,1$); 12 measurements \checkmark

Hints of U-spin breaking

- $\Delta S = 0 \Rightarrow q = d, \ \Delta S = 1 \Rightarrow q = s$
 - \rightarrow 7 hadronic parameters $\leftarrow T_q^x, P_q^x$ with x=0,1
 - \rightarrow 6 measurements available X
 - ightarrow 2 future measurements $\Rightarrow \gamma$ can be extracted with eta_q from independent source
- ullet Apply U-spin! \Rightarrow 8 parameters (γ + 7 hadronic for both $\Delta S=0,1$); 12 measurements \checkmark
- ullet Bad Fit! $\chi^2_{
 m min}=17.8$ for 4 dof. $\gamma=(67.6\pm3.4)^\circ$ close to $\gamma_{
 m direct}$
- U-spin relation(s): $-\frac{C_{\mathrm{CP}}^{s}\mathcal{B}_{\mathrm{CP}}^{s}F_{\mathrm{PS}}^{d}}{C_{\mathrm{CP}}^{d}\mathcal{B}_{\mathrm{CP}}^{d}F_{\mathrm{PS}}^{s}}=1$
- $\bullet \ \mathcal{A}(B_d^0 \to \pi^+\pi^-) \approx \mathcal{A}(B_s^0 \to \pi^+K^-)$
- $\mathcal{A}(B_s^0 \to K^+K^-) \approx \mathcal{A}(B_d^0 \to \pi^-K^+)$

$\Delta S = 0$	$\Delta S = 1$	Relation
$B_d^0 o \pi^+\pi^-$	$B_s^0 o K^+K^-$	2.90 ± 0.69
$B_s^0 \to \pi^+ K^-$	$B_d^0 o \pi^- K^+$	$1.21 {\pm} 0.25$
$B_s^0 o \pi^+ K^-$	$B_s^0 o K^+K^-$	3.43 ± 0.91
$B_d^0 \to \pi^+ \pi^-$	$B_d^0 \to \pi^- K^+$	1.06 ± 0.42

Flavor-SU(3) symmetry: $SU(3)_F$

- ullet 3 light quarks, u,d,s, much lighter than b quark
- $u, d, s = SU(3)_F$ triplet; State $\rightarrow |irrep, Y, I, I_3\rangle$
- $|u\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\rangle, |d\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, -\frac{1}{2}\rangle, |s\rangle = |\mathbf{3}, -\frac{2}{3}, 0, 0\rangle$

Flavor-SU(3) symmetry: $SU(3)_F$

ullet 3 light quarks, u, d, s, much lighter than b quark

•
$$u, d, s = SU(3)_F$$
 triplet; State $\rightarrow |irrep, Y, I, I_3\rangle$

$$\bullet \ \left|u\right\rangle = \left|\mathbf{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right\rangle, \ \left|d\right\rangle = \left|\mathbf{3}, \frac{1}{3}, \frac{1}{2}, -\frac{1}{2}\right\rangle, \ \left|s\right\rangle = \left|\mathbf{3}, -\frac{2}{3}, 0, 0\right\rangle$$

$$\bullet$$
 $|\bar{d}\rangle = |\mathbf{3}^*, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\rangle; \quad Y = \text{hypercharge}, \ I = \text{Isospin}$

Flavor-SU(3) symmetry: $SU(3)_F$

ullet 3 light quarks, u, d, s, much lighter than b quark

•
$$u, d, s = SU(3)_F$$
 triplet; State $\rightarrow |\mathbf{irrep}, Y, I, I_3\rangle$

•
$$|u\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}\rangle, |d\rangle = |\mathbf{3}, \frac{1}{3}, \frac{1}{2}, -\frac{1}{2}\rangle, |s\rangle = |\mathbf{3}, -\frac{2}{3}, 0, 0\rangle$$

$$ullet$$
 $ig|ar{d}ig
angle=ig|f 3^*,-rac{1}{3},rac{1}{2},rac{1}{2}ig
angle; \quad Y=$ hypercharge, $I=$ Isospin

$$ullet$$
 $3 imes 3^* = 1+8$: These are the 3 pions, 4 kaons, η,η'

$$ullet$$
 $|\pi^+
angle=|uar{d}
angle=|{f 8},0,1,1
angle$ Similarly other pions and kaons are also octets

Apply to two-body final states

$$|PP\rangle_{\text{sym}} = (8 \times 8)_{\text{sym}} = 1 + 8 + 27 = 36$$

• How to find independent RMEs in the decay amplitude = $\langle B|H|PP\rangle$?

ullet How to find independent RMEs in the decay amplitude $=\langle B|\,H\,|PP
angle ?$

• Final state: $|PP\rangle_{\text{sym}} = |\mathbf{1}\rangle + |\mathbf{8}\rangle + |\mathbf{27}\rangle$

- ullet How to find independent RMEs in the decay amplitude $=\langle B|\,H\,|PP
 angle ?$

- Final state: $|PP\rangle_{\text{sym}} = |\mathbf{1}\rangle + |\mathbf{8}\rangle + |\mathbf{27}\rangle$
- Decay amplitude = $\langle B|H|PP\rangle = \sum\limits_i C_i \langle \mathbf{3}|\mathbf{3}^*,\mathbf{6},\mathbf{15}^*|36\rangle_i$ (GHLR, hep-ph/9404283)

 C_i contains SU(2) Clebsch-Gordan Coefficients and SU(3) isoscalar factors

- ullet How to find independent RMEs in the decay amplitude $=\langle B|\,H\,|PP
 angle ?$

- Final state: $|PP\rangle_{\text{sym}} = |\mathbf{1}\rangle + |\mathbf{8}\rangle + |\mathbf{27}\rangle$
- Decay amplitude = $\langle B|H|PP\rangle = \sum\limits_i C_i \langle \mathbf{3}|\mathbf{3}^*,\mathbf{6},\mathbf{15}^*|36\rangle_i$ (GHLR, hep-ph/9404283)

 C_i contains SU(2) Clebsch-Gordan Coefficients and SU(3) isoscalar factors

- Independent RMEs: $V_{ub}^*V_{us} \rightarrow 5$, $V_{tb}^*V_{ts} \rightarrow 2$
- Each RME is a complex number: 7 independent RMEs = 13 real parameters

$B \to PP$ data by transition

- ullet $\Delta S=0$: ar b o ar d transitions
- 15 measurements available
- ullet 7 RMEs o 13 hadronic parameters
- $\chi^2_{\rm min}/{\rm dof}=0.35/2$; $p\sim 0.8$ good fit

Decay	$\mathcal{B}_{ ext{CP}}$	C_{CP}	S_{CP}
$B^+ o K^+ \overline{K}^0$	/	1	
$B^+ o \pi^+ \pi^0$	1	1	
$B^0 o K^0 \overline{K}^0$	/	1	1
$B^0 o \pi^+\pi^-$	1	1	1
$B^0 o \pi^0 \pi^0$	1	1	?
$B^0 \to K^+ K^-$	✓	?	?
$B_s^0 \to \pi^+ K^-$	✓	1	
$B_s^0 \to \pi^0 \overline{K}^0$?	?	?

- ullet $\Delta S=1\colon ar{b} oar{s}$ transitions
- 15 measurements available
- ullet 7 RMEs o 13 hadronic parameters
- $\chi^2_{\rm min}/{\rm dof}=1.8/2$; $p\sim 0.4$ good fit

-111111			
Decay	$\mathcal{B}_{ ext{CP}}$	C_{CP}	S_{CP}
$B^+ o \pi^+ K^0$	✓	1	
$B^+ o \pi^0 K^+$	✓	1	
$B^0 o \pi^- K^+$	✓	1	
$B^0 o \pi^0 K^0$	✓	1	1
$B_s^0 o K^+K^-$	✓	✓	✓
$B_s^0 o K^0 \overline{K}^0$	✓	?	?
$B_s^0 \to \pi^+\pi^-$	1	?	?
$B_s^0 \to \pi^0 \pi^0$	✓	?	?

Combined $B \to PP$ data: the anomaly

- ullet BB with others in arxiv:2311.18011: fit the entire set of B o PP data
- ullet 30 observables, 26 parameters: fit gives $|T_s/T_d|=12\pm 4$
- ullet SU(3) hypothesis: 30 observables, 13 parameters: fit gives $\chi^2_{\min}/\mathrm{dof} \sim 44/17$ (3.6 σ)
- ullet Fit with QCDf-inspired constraint |C/T|=0.2

$$\rightarrow \Delta S = 1$$
 fit: $\chi^2_{\rm min}/{\rm dof} \sim 7/3$, $p \sim 0.1$

- $\rightarrow~\Delta S=0$ fit: $\chi^2_{\rm min}/{\rm dof}\sim 19/3,~p\sim 3\times 10^{-4}$ or 3.6 σ away from SM SU(3) $_F$
- ightarrow Combined fit: $\chi^2_{\rm min}/{
 m dof}\sim 56/18$, $p\sim 10^{-5}$ or 4.4 σ away from SM SU(3) $_F$
- Both fits find deviations in $B^0_s \to K^+K^-$ observables
- Deviations also in $B^+ \to \pi^0 K^+, B^0 \to \pi^- K^+, \pi^0 K^0, K^0 \overline{K}^0$

Results highlights

 \bullet Ratios of $\Delta S=1$ and $\Delta S=0$ diagrams |D'/D|

$ ilde{T}'/ ilde{T} $	$ ilde{C}'/ ilde{C} $	$ \tilde{P_{uc}'}/\tilde{P_{uc}} $	$ ilde{A}'/ ilde{A} $	$ P\tilde{A}'_{uc}/P\tilde{A}_{uc} $	$ ilde{P_{tc}'}/ ilde{P_{tc}} $	$ P\tilde{A}_{tc}'/P\tilde{A}_{tc} $
12±4	6.6 ± 2.2	16±22	14 ± 13	10±13	0.97 ± 0.52	1.3 ± 2.7

Missing observables can shed light:

•
$$\mathcal{B}: B^0_s \to \pi^0 \overline{K}^0$$

•
$$C: B^0 \to K^+K^-, B^0_s \to \pi^0\overline{K}^0, K^0\overline{K}^0, 2\pi$$

$$\bullet \ S \colon B^0 \to \pi^0\pi^0, K^+K^-, \ B^0_s \to \pi^0\overline{K}^0, K^0\overline{K}^0, 2\pi$$

- Work in progress:
 - ightarrow include η s
 - \rightarrow parametric SU(3) breaking

Summary

- ullet We see signs of anomalies in hadronic B decays
- ullet Large U-spin breaking needed to explain U-spin related $B^0_{(s)} o DD$ (D = Doublet)
- ullet Puzzle appears also in SU(3) $_F$ related B o PP (P = pseudoscalar)
- Puzzles involve $B^0_s \to K^+K^-$
- ullet Puzzles need unusually large T_s/T_d
- Emerging cracks in the fabric of flavor symmetries
- ullet Lack of QCD understanding or hint for new physics in b o s?
- Lots of data to come in the next decade
- The future is bright!

Thanks!

- UG students: R. Berthiaume, R. Boumris N. Payot, M. Bouchard (UdeM)
 A. Houck, C. MacKenzie, L. Hudy (LTU)
- Masters student: A. Jean (UdeM)
- Postdocs: S. Kumbhakar (UdeM)
- Faculty: D. London (UdeM)
- Support: US National Science Foundation (PHY-2310627)

Back-up Slides

Data on $\Delta S = 0$ decays

Decay	\mathcal{B}_{CP} (×10 ⁻⁶)	C_{CP}	$S_{ m CP}$
$B^+ o K^+ \overline{K}^0$	1.31 ± 0.14	$0.04{\pm}0.14^{\dagger}$	
$B^+ \to \pi^+ \pi^0$	$5.59{\pm}0.31$	0.008 ± 0.035	
$B^0 \to K^0 \overline{K}^0$	$1.21{\pm}0.16^{\dagger}$	0.06±0.26	-1.08 ± 0.49
$B^0 o \pi^+\pi^-$	$5.15{\pm}0.19$	0.311 ± 0.030	-0.666 ± 0.029
$B^0 o \pi^0 \pi^0$	$1.55 \!\pm 0.16$	0.30 ± 0.20	
$B^0 \to K^+K^-$	$0.080{\pm}0.015$		
$B_s^0 o \pi^+ K^-$	$5.90^{+0.87}_{-0.76}$	$0.225{\pm}0.012$	
$B_s^0 \to \pi^0 \overline{K}^0$			

[†] data from the PDG other data from HFLAV

Data on $\Delta S=1$ decays

Decay	\mathcal{B}_{CP} (×10 ⁻⁶)	C_{CP}	S_{CP}
$B^+ o \pi^+ K^0$	23.52 ± 0.72	$-0.016{\pm}0.015$	
$B^+ o \pi^0 K^+$	13.20 ± 0.46	$0.029 {\pm} 0.012$	
$B^0 \to \pi^- K^+$	19.46±0.46	-0.0836 ± 0.0032	
$B^0 o \pi^0 K^0$	10.06±0.43	$-0.01{\pm}0.10$	0.57 ± 0.17
$B_s^0 o K^+K^-$	$26.6^{+3.2}_{-2.7}$	$-0.17{\pm}0.03$	0.14±0.03
$B_s^0 o K^0 \overline{K}^0$	17.4 ± 3.1		
$B_s^0 o \pi^+\pi^-$	$0.72^{+0.11}_{-0.10}$		
$B_s^0 \to \pi^0 \pi^0$	2.8±2.8*		

^{*} data from Belle

other data from HFLAV

Fit results

	$ \widetilde{T} $	$ \widetilde{C} $	$ \widetilde{P}_{uc} $	$ \widetilde{A} $
Fit	4.0 ± 0.5	6.6 ± 0.7	3 ± 4	6 ± 5
$\Delta S = 0$	$ \widetilde{PA}_{uc} $	$ P_{tc} $	$ PA_{tc} $	
	0.7 ± 0.8	0.8 ± 0.4	0.2 ± 0.4	
	$ \widetilde{T}' $	$ \widetilde{C}' $	$ \widetilde{P}'_{uc} $	$ \widetilde{A}' $
Fit	48 ± 14	41 ± 14	48 ± 15	81 ± 28
$\Delta S = 1$	$ \widetilde{PA}'_{uc} $	$ P'_{tc} $	$ PA_{tc}' $	
	7 ± 4	0.78 ± 0.16	0.24 ± 0.04	
	$ \widetilde{T} $	$ \widetilde{C} $	$ \widetilde{P}_{uc} $	$ \widetilde{A} $
Fit	4.7 ± 0.5	5.8 ± 0.6	2.1 ± 0.5	4.2 ± 0.7
$SU(3)_F$	$ \widetilde{PA}_{uc} $	$ P_{tc} $	$ PA_{tc} $	
	0.70 ± 0.09	1.15 ± 0.04	0.214 ± 0.018	

Electro-weak penguin operators

- ullet EWP operators $\propto V_{tb}^* V_{ts}$
- ullet Operators of the type ${f 3}^* imes {f 8} = {f 3}^* + {f 6} + {f 15}^*$
- ullet Reminder: tree operators also have ${f 3}^*+{f 6}+{f 15}^*$
- ullet Resulting RMEs in $\langle B|H|PP \rangle$ of the type:

$$ra{3^*} 6\ket{8}, ra{3^*} \ket{15^*} \ket{8}, ext{ and } ra{3^*} \ket{15^*} \ket{27}$$

Identical in trees and EWPs

- This is the source of EWP-Tree relations
- Breaking EWP-Tree relations is effectively SU(3) breaking

- $\mathcal{A}(B \to f) = |a| + |b|e^{i\phi}e^{i\delta} \to \Gamma \propto |\mathcal{A}|^2$ $\overline{\mathcal{A}}(\overline{B} \to \overline{f}) = |a| + |b|e^{-i\phi}e^{i\delta} \to \overline{\Gamma} \propto |\overline{\mathcal{A}}|^2$
 - 4 parameters: 2 magnitudes (|a|,|b|), 1 rel. strong phase (δ), 1 rel. weak phase (ϕ)
- 2 Observables: $\mathcal{B}_{\mathrm{CP}} = \frac{\Gamma + \overline{\Gamma}}{2\Gamma_B}$, $C_{\mathrm{CP}} = \frac{\Gamma \overline{\Gamma}}{\Gamma + \overline{\Gamma}}$ (direct CP asymmetry)
- ullet For $B^0 o f$ with f=ar f additional observable $S_{
 m CP}$ (indirect CP asymmetry)

B-mixing:
$$|B\rangle_{\rm mass} = p |B\rangle + q |\bar{B}\rangle$$
 with $\lambda = \frac{q}{p} \frac{\bar{\mathcal{A}}}{\mathcal{A}} \Rightarrow S_f = \frac{2{\rm Im}[\lambda]}{1 + |\lambda|^2}$

- Information about q/p comes from $B-\bar{B}$ mixing (independent source)
- For B_s , additional observable $A^{\Delta\Gamma}=\frac{-2\mathrm{Re}[\lambda]}{1+|\lambda|^2}$ (since $\Delta\Gamma_s$ is sizable)
- $C_{\rm CP} = \frac{1 |\lambda|^2}{1 + |\lambda|^2} \Rightarrow \text{Identity: } (C_{\rm CP})^2 + (S_{\rm CP})^2 + (A^{\Delta\Gamma})^2 = 1 \text{ (LHCb)}$

