Progress in lattice QCD in studying CPV and mixing in charm

Felix Erben

Implications of LHCb measurements, CERN

23 October 2024

CPV IN CHARM

- no-mixing point x = y = 0 excluded at $> 11.5\sigma$
- no evidence for indirect CP violation. $|q/p| \neq 1$ or $\phi = arg(q/p) \neq 0$

hadronic D decays Candidates / (1 MeV/c²) LHCb LHCb Candidates / (1 MeV/c2 Comb bkg Comb bke 1850 1900 1800 1850 1900 $m(D^0)$ [MeV/ c^2]

[LHCb, PRL 19]

•
$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$

 $m(D^0)$ [MeV/ c^2]

CPV IN CHARM

Neutral Meson Mixing

K MESON MIXING

Warm-up exercise, CP violation in K mixing

$$egin{aligned} |\mathsf{K}_{\mathrm{L}}
angle &pprox rac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}
angle + |ar{\mathsf{K}}^{0}
angle
ight) \ |\mathsf{K}_{\mathrm{S}}
angle &pprox rac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}
angle - |ar{\mathsf{K}}^{0}
angle
ight) \end{aligned}$$

with a long-lived $|K_L\rangle$ and a short-lived $|K_S\rangle$. Indirect CP violation parameter ϵ_{κ} can be parameterized by mass and widths splittings

$$\begin{split} \Delta M_{K} &= M_{K_{L}} - M_{K_{S}}, \qquad \Delta \Gamma_{K} = \Gamma_{K_{S}} - \Gamma_{K_{L}} \\ \varphi_{\varepsilon} &= \frac{\Delta M_{K}}{\Delta \Gamma_{K}/2} \\ \varepsilon_{K} &= e^{i\varphi_{\varepsilon}} \sin(\varphi_{\varepsilon}) \left(\frac{-ImM_{\bar{0}0}}{\Delta M_{K}} + \frac{ReA_{0}}{ImA_{0}} \right) \end{split}$$

K MESON MIXING

$$\varepsilon_{K} = e^{i\varphi_{\varepsilon}} \sin(\varphi_{\varepsilon}) \left(\frac{-ImM_{12}}{\Delta M_{K}} + \frac{ReA_{0}}{ImA_{0}} \right)$$

 A_0 is the K $\rightarrow (\pi\pi)_{I=0}$ decay amplitude M_{12} splits into

$$\begin{split} M_{12} &= \langle K^0 | \mathfrak{H}_W^{eff} | \bar{K}^0 \rangle = \langle K^0 | \mathfrak{H}_W^{eff} | \bar{K}^0 \rangle_{SD} + \langle K^0 | \mathfrak{H}_W^{eff} | \bar{K}^0 \rangle_{LD} \\ &= \langle K^0 | \mathfrak{H}_W^{\Delta S = 2} | \bar{K}^0 \rangle + \sum_n \frac{\langle K^0 | \mathfrak{H}_W^{\Delta S = 1} | n \rangle \langle n | \mathfrak{H}_W^{\Delta S = 1} | \bar{K}^0 \rangle}{M_K - E_n} \end{split}$$

On the lattice, we can compute both:

- $\langle K^0|\mathcal{H}_W^{eff}|\bar{K}^0
 angle_{SD}$ [Kaon mixing beyond the standard model with physical masses; FE et al., PRD 24]
- $\langle K^0|\mathcal{H}_W^{eff}|\bar{K}^0\rangle_{LD}$ [Long-distance contribution to ϵ_K from lattice QCD; Bai et al., PRD 24]

Challenges in computing ϵ_{K}

extracting the K - $\bar{\text{K}}$ mixing amplitude from finite-volume correlators [Christ et al., PRD 13]

- closest Euclidean correlation function: integrated 4pt correlator $\int dt_1 dt_2 \, \langle 0|T[\bar K^0(t_f) H_W(t_2) H_W(t_1) \bar K^0(t_i)]|0\rangle$
- on-shell intermediate states $|n\rangle\langle n|$ between H_W complicate calculation:

growing exponentials

- FV states E_n with mass $M_n < M_K$ lead to unphysical growing exponentials
- these must be removed explicity and then added back in later

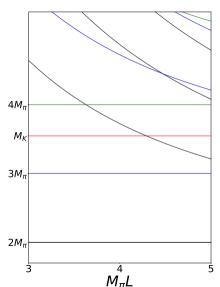
finite-volume effects

- consequently, FV estimator has poles at removed energies
- power-like volume effects are understood and described by K $\to \pi\pi$ and $\pi\pi \to \pi\pi$ scattering amplitudes
- ⇒ Precise knowledge of **excited-state spectrum** needed to extract long-distance amplitude from Euclidean finite-volume correlators

EXPLORATORY CALCULATION [LONG-DISTANCE CONTRIBUTION TO ε_K FROM LATTICE QCD; BAI ET AL., PRD 24]

- RBC/UKQCD Domain-Wall Fermion ensembles
- one coarse lattice spacing $a^{-1} = 1.78 \text{ GeV}$
- 2 pion masses 339 MeV and 592 MeV
- non-perturbative renormalization
- result: $\epsilon_{\rm K}^{\rm LD} = 0.195(77)e^{\mathrm{i}\varphi_{\varepsilon}} \times 10^{-3}$
- comparison: $\epsilon_{\rm K}^{\rm SD}=1.360(154)e^{{\rm i}\varphi_{\,\varepsilon}}\times 10^{-3}$
- smaller than experimental value: $|\epsilon_{K}| = 2.228(11) \times 10^{-3}$
- discrepancy not understood, but $|V_{c\,b}|$ contributes to ε_K determination, present uncertainty in incl. vs excl.

a selection of topologies to be computed


integrated 4pt-correlator, with subtractions

Calculation at physical pion mass underway, progress report at this year's lattice conference [Yikai Huo, Lattice 24]

$K - \bar{K}$ MIXING

- Kaon decay spectrum on lattices $M_{\pi}L \sim 4$
- removal of 2-3 states \rightarrow conceptually clear
- 3-pion state kinematically suppressed, not removed in RBC/UKQCD work
- · formalism for explicit removal known

[Jackura, Briceño, Hansen; PoS Lattice22]

- D-meson decay spectrum on lattices $M_\pi L \sim 4$

$D - \bar{D}$ mixing

- D-meson decay spectrum on lattices $M_\pi L \sim 4$
- 17 interacting states below M_D at $M_\pi L \sim 4$

- D-meson decay spectrum on lattices $M_\pi L \sim 4$
- 17 interacting states below M_D at $M_{\pi}L \sim 4$
- 3π states \rightarrow conceptually clear

- D-meson decay spectrum on lattices $M_\pi L \sim 4$
- 17 interacting states below M_D at $M_\pi L \sim 4$
- 3π states \rightarrow conceptually clear
- 4π states \rightarrow no formalism yet

- D-meson decay spectrum on lattices $M_\pi L \sim 4$
- 17 interacting states below M_D at $M_\pi L \sim$ 4
- 3π states \rightarrow conceptually clear
- 4π states \rightarrow no formalism yet
- $K\pi$, $K3\pi$, 3K, 6π , ... \rightarrow

- no hope to extract full D-meson decay spectrum from lattice QCD with current formalisms and techniques
- exciting recent developments in spectral-function methods in lattice QCD
 - O(3) non-linear σ model [Bulava et al.; JHEP 22]
 - R-Ratio [Alexandrou et al.; PRL 23], can help constrain $(g-2)_{\mu}^{\mathrm{HVP}}$
 - inclusive decays [Hansen et al.; PRD 17] [Gambino, Hashimoto; PRL 21] [Barone, Lattice@CERN 24] [De Santis, Lattice24] [Groß, Lattice24] [Kellermann, Lattice24]
- similar methods would apply here, but formalisms do not exist as of yet
- a whole week was dedicated to these problems at our Lattice Theory Institute this year [Lattice@CERN 24, week 1]

Hadronic Decays

RBC/UKQCD K $ightarrow \pi\pi$ (Abbott et al.; PRD 20)

- One project where DWF at M_m^{phys} led to success: $K \rightarrow \pi\pi$
- Domain-Wall Fermions lead to clean 4-quark-operator renormalization
- long-standing puzzle $Re(A_0)/Re(A_2) = 22.45$ - factor 10 larger than perturbatively
- cancellation at M_{π}^{phys} between Wick contractions of $Re(A_2)$. very sensitive to m₁
- $\Rightarrow \text{Re}(A_0)/\text{Re}(A_2) = 19.9(2.3)(4.4)$

- Progress on direct Kaon CPV parameter ϵ'
 - second lattice spacing added to existing approach (G-parity boundary)

[Kelly: Lattice24]

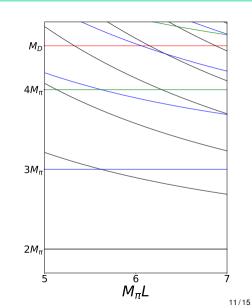
 Periodic boundary conditions, excited state from variational techniques

[Tomii; Lattice24]

TOWARDS HADRONIC D DECAYS ON THE LATTICE

- first exploratory calculation: $D \to K\pi$ at $SU(3)_F$ symmetric point [F Joswig, FE, MT Hansen, N Lachini, A Portelli; PoS Lattice22] [MT Hansen, Lattice23]
- Need to compute the $D \to K\pi$ amplitude:

$$A = C^{LL} Z^{\overline{MS}} \langle n, L | \mathcal{H}_W | D, L \rangle$$


which includes the challenges:

- Lellouch-Lüscher factor C^{LL}
- Renormalization Z^{MS}
- Finite-volume state $\langle n, L |$
- 3-point matrix element $\langle n, L | \mathcal{H}_{\mathcal{W}} | D, L \rangle$

FINITE-VOLUME SPECTRUM AT $SU(3)_F$ SYMMETRIC POINT

	$T \times L^3$	a[fm]	$M_{\pi}L$
a12m400	96×24^{3}	0.12	5.988(28)
a094m400	96×32^{3}	0.094	6.201(19)
a064m400	96×48^{3}	0.064	6.383(14)

- ensembles by the OpenLat initiative [OpenLat]
- D-meson decay spectrum at $SU(3)_F$ symmetric point, $M_\pi = 410 \text{ MeV}$
- even around $M_\pi L \sim 6$ spectrum seems relatively manageable
- $M_K = M_{\pi} \Rightarrow$ no further states present
- $4M_{\pi} \sim M_D \Rightarrow$ Lellouch-Lüscher factor C^{LL} is known [Hansen, Sharpe; PRD 12]
 - simple form for 2π spectrum factor
 - including heavily suppressed 3π contributions is conceptually possible

FURTHER CHALLENGES

Renormalization:

- working on non-perturbative renormalization [Martinelli et al., 1995]
- fix renormalization conditions via tree-level matrix elements

$$Z_{\Gamma}\langle p|O_{\Gamma}|p\rangle\big|_{p^2=-\mu^2}=\langle p|O_{\Gamma}|p\rangle\big|_{\text{tree}}$$

- four distinct flavours in $D\to K\pi$ avoid power-divergent mixing

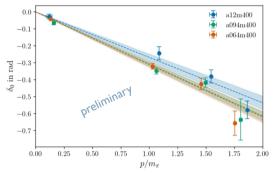
$$Q = (\bar{d}u)_{V-A}(\bar{c}s)_{V-A}$$

finite-volume state:

Distillation technique allows large basis of two-hadron operators

$$K(\mathbf{p}_1)\pi(\mathbf{p}_1') = |K\pi\rangle_1$$

$$\dots$$


$$K(\mathbf{p}_m)\pi(\mathbf{p}_m') = |K\pi\rangle_m$$

⇒ Generalized Eigenvalue Problem technique allows spectrum extraction

$$|n,L\rangle = \nu_1^n |K\pi\rangle_1 + \dots + \nu_m^n |K\pi\rangle_m$$

STATUS OF THE CALCULATION

- S-wave phase shift δ₀ consistent over all ensembles
- SU(3)_F symmetric point renders otherwise inachievable computation possible
- code & strategy for most complex contractions have been finalized

rest-frame phase shift δ_0 on the 3 ensembles

3-POINT MATRIX ELEMENTS

3-point matrix element:

- Incorporating the local 4-quark operator for \mathcal{H}_W into the distillation framework is challenging but straightforward
- The four distinct flavours in $Q=(\bar d u)_{V-A}(\bar c s)_{V-A}$ significantly simplifies the challenge
- The code for computing $D \to K\pi$ matrix elements has been developed already
- ⇒ Reduced number of Wick-contractions

CONCLUSIONS

$D-\bar{D} \text{ mixing}$

- formalism and computations exist for $\mathsf{K}-\bar{\mathsf{K}}$ mixing
- full excited-state spectrum inachievable for D case
- spectral reconstruction methods would be a more feasible approach
- ⇒ fast progress is made, but no formalism exists as of yet

hadronic D decays

- formalism and computations exist for $K \to \pi\pi$
- full excited-state spectrum also inachievable
- exploratory calculation studies $D \to K\pi \text{ decays at } SU(3)_F \text{ symmetric point}$
- symmetries and high pion masses render computation achievable

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101106913.