Inclusive $B_s^0 \to X_c \mathcal{L} \nu$ measurements at LHCb

Exclusively for you

The CKM triangle

- V_{cb} and V_{ub} determine height of CKM triangle
- Consistent discrepancy in different measurement methods for V_{ub} and V_{cb} in the last 15+ years

Inclusive vs Exclusive A long-standing puzzle

- Inclusive decays consider all $B \to X_{c/u} \mu \nu$ decays
- Exclusive decays consider one specific $B \to X_{c/u} \mu \nu$ decay, e.g. $B \to D^* \mu \nu$
- Discrepancy is not just an "aesthetic problem", it limits the precision of e.g. the prediction on $\varepsilon_K \sim V_{cb}^4$

Inclusive vs Exclusive A long-standing puzzle

- Exclusive measurements performed by B-factories and LHCb.
- Inclusive measurements only by B-factories.
- Lack of unique final state very hard for detectors at hadron colliders.

Phys.Rev.D 101 (2020) 7, 072004

Sum-of-exclusives

"The whole is more than the sum of its parts"

- Instead of a "true" inclusive measurement, sum all final states.
- Pioneering measurement by CDF (from 2005!), however by now outdated by knowledge about the D^{**} spectrum
- $D^{(*(*))}$ spectrum complicated by interference effects.

Plenty of B_s^0 mesons Provided to you by the LHC

- LHCb reconstructs many B_s^0 and Λ_b^0 hadrons.
- $D_s^{(*(*))}$ has mostly well-separated resonances no interference effects to consider.
- $B_s^0 \to D_s^{(*(*))} \ell \nu$ abundant at LHCb.
- But how do we actually determine V_{cb} ?

Heavy Quark Expansion

And its parameters

- Decay rate of $B_s^0 \to D_s^{(*(*))} \mathcal{E} \nu$ given by V_{cb} , and expansion in $1/m_b^n$ with perturbatively calculable parts and non-perturbative parameters.
- Corrections only enter at $1/m_b^2$
- Need to determine $\mu_{\pi}, \mu_{G}, \rho_{D}$ and ρ_{LS} from data.

$$\begin{split} \Gamma = & V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} \eta_{ew} \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)} + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 z_0^{(2)}(r) + \dots \right] \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \dots \right) \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \dots \right) \\ & + \frac{\rho_D^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \dots \right) \\ & + \frac{\rho_{LS}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \dots \right) \\ & + \dots \right] \end{split}$$

Moments

Now wait a moment

- Can link μ_{π} , μ_{G} , ρ_{D} and ρ_{LS} to statistical moments of the E_{ℓ}^{*} , q^{2} or $m_{X_{c}}$ spectra.
- E_{ℓ}^* and q^2 not directly accessible at LHCb, but sum-of-exclusives m_{X_c} is.
- So all we need to know is the $m_{X_c} = m_{D_s^{(*(*))}}$ spectrum, and we can extract the non-perturbative parameters of the HQE

$$M'_n = \langle (m_H^2 - \langle m_H^2 \rangle)^n \rangle = \int (m_H^2 - M_1)^n \frac{1}{\Gamma_{SL}} \frac{d\Gamma_{SL}}{dm_H^2} dm_H^2.$$

$$M_1 = 4.85 + 0.30\alpha_s + 0.46 \frac{\mu_G^2}{\text{GeV}^2} - 0.68 \frac{\mu_\pi^2}{\text{GeV}^2} + 0.99 \frac{\rho_D^3}{\text{GeV}^3} - 0.12 \frac{\rho_{LS}^3}{\text{GeV}^3},$$

$$M'_2 = 0.28 + 1.47\alpha_s - 0.30 \frac{\mu_G^2}{\text{GeV}^2} + 4.77 \frac{\mu_\pi^2}{\text{GeV}^2} - 6.0 \frac{\rho_D^3}{\text{GeV}^3} + 0.28 \frac{\rho_{LS}^3}{\text{GeV}^3},$$

$$M'_3 = -0.058 + 3.3\alpha_s + 0.04 \frac{\mu_G^2}{\text{GeV}^2} + 3.6 \frac{\mu_\pi^2}{\text{GeV}^2} + 23.96 \frac{\rho_D^3}{\text{GeV}^3} + 0.96 \frac{\rho_{LS}^3}{\text{GeV}^3}.$$

Current knowledge

Of semileptonic B_s^0 decays

- 1 ground state,
 1 excited state,
 4 higher excited states,
 "non-resonant" contribution
- Each $D_s^{(*(*))}$ meson has different BRs into different final states need to know at least one precisely.

B_s^0 Decay	$\mathcal{B}[\%]$ (Conf. A)	$\mathcal{B}[\%]$ (Conf. B)
$\overline{B}_s^0 \to X_{cs} \ell \bar{\nu}_\ell$	10.05 ± 0.31	10.05 ± 0.31
$\overline{B}_{s}^{0} \to D_{s}^{+} \ell^{-} \bar{\nu}_{\ell} \ [38]$	$2.44 {\pm} 0.23$	2.44 ± 0.10
$\overline{B}_{s}^{0} \to D_{s}^{*+} \ell^{-} \overline{\nu}_{\ell} \ [38]$	5.3 ± 0.5	5.30 ± 0.22
$\overline{B}_s^0 \to D_{s0}^{*+} \ell^- \overline{\nu}_\ell \text{ (see text)}$	0.3 ± 0.3	0.30 ± 0.03
$\bar{B}_s^0 \to D_{s1}^{\prime +} \ell^- \bar{\nu}_{\ell} \text{ (see text)}$	0.3 ± 0.3	0.30 ± 0.03
$\overline B{}^0_s \to D^+_{s1} \ell^- \bar \nu_\ell$	0.98 ± 0.20	0.98 ± 0.05
$\overline{B}_s^0 \to D_{s2}^{*+} \ell^- \bar{\nu}_\ell$	0.58 ± 0.20	0.58 ± 0.04
$\overline{B}_s^0 \to D^{(*)} K \ell^- \bar{\nu}_\ell \text{ (see text)}$	0.15 ± 0.15	0.150 ± 0.015

First two states

The basics

- $\bullet \ \mathscr{B}(B_s^0 \to D_s^+ \mu^- \nu)$
 - Known with about 10% relative precision.
 - Potential for further reduction.
- $\bullet \quad \mathscr{B}(B_S^0 \to D_S^{*+} \mu^- \nu)$
 - Known with about 10% relative precision.
 - Potential for further reduction.

First excited states

Below threshold

- The first two higher resonances are below the DK threshold, so exclusively decay to D_s^+ mesons.
- $\bullet \mathcal{B}(B_s^0 \to D_{s0}^{*+} \mu^- \nu)$
 - No measurement has been published. We assume $\mathcal{B} = (0.3 \pm 0.3) \%$
 - $\mathscr{B}(D_{s0}^{*+} \to D_s^+ \pi^0)$ known with about 20% relative uncertainty.
 - Soft π^0 makes the reconstruction inefficient, but clearly doable.
- $\bullet \quad \mathscr{B}(B_s^0 \to D_{s1}^{'+} \mu^- \nu)$
 - No measurement has been published. We assume $\mathcal{B} = (0.3 \pm 0.3) \%$
 - $\mathscr{B}(D_{s1}^{'+} \to D_s^{*+}\pi^0)$ known with about 20% relative uncertainty
 - $D_{s1}^{'+} \to D_s^{+} \pi^{+} \pi^{-}$ also seen and experimentally easier, but a bit larger uncertainty

Second excited states

Above threshold

- The second two higher resonances are above the DK threshold, and decay to DK mesons.
- $\bullet \ \mathscr{B}(B_s^0 \to D_{s1}^+ \mu^- \nu)$
 - Measured by DØ and LHCb with about 20% relative uncertainty. Easy to improve.
 - $\mathcal{B}(D_{s1}^+ \to D^{0*}K^+)$ known with about 15% relative uncertainty, thanks to recent BESIII result, <u>arXiv:2407.07651</u> (not yet used in the following)
 - Experimentally easy, reconstruct D^{*0} as D^0 .
- $\bullet \ \mathscr{B}(B_s^0 \to D_{s2}^{*+} \mu^- \nu)$
 - Measured by LHCb with about 35% relative uncertainty. Easy to improve.
 - $\mathcal{B}(D_{s2}^{*+} \to D^0 K^+)$ with about 15% relative uncertainty, thanks to recent BESIII result, <u>arXiv:2407.07651</u> (not yet used in the following)
 - Experimentally easy

Even higher states

- Resonances with higher mass than the D_{s2}^{*+} have been observed.
- Measuring $\mathcal{B}(B_s^0 \to D_{sJ}^{*+} \mu^- \nu)$ with $D_{sJ}^{*+} \to D^0 K^+$ is experimentally straightforward, but $\mathcal{B}(D_{sJ}^{*+} \to D^0 K^+)$ cannot be measured at LHCb.
- Might be possible at Belle II (?)

"Non-resonant" decays And their modelling

- $B_s^0 \to D^0 K^+ \mu \nu$ has been observed at LHCb, but no branching fraction was published.
- For this study we extract the shape from a "modified Goity-Roberts model" (used for $B \to D\pi\ell\nu$), accounting for the $K-\pi$ difference.
- A new approach is under development, following arxiv:2311.00864 for $B \to D\pi\ell\nu$ (E. Gustafson, F. Herren, R. S. Van de Water, R. van Tonder, M. L. Wagman)

Total Branching fraction

- Summing up all exclusive branching fractions, including an estimate of the non-resonant contribution from Phys.Rev.D 100 (2019) 3, 031102, we got more than the prediction for the semileptonic branching fraction
- Given the uncertainty on the nonresonant component, we constrained it to:

•
$$\Gamma_{SL}(B_s^0)/\Gamma_{SL}(B^0) = 1 - (0.018 \pm 0.008)$$

•
$$\mathcal{B}(B_s^0 \to X_c \mu \nu) = (10.05 \pm 0.31) \%$$

$$\mathscr{B}(B_s^0 \to D^{(*)0}K^+\mathcal{E}\nu) = \mathscr{B}(B_s^0 \to X_c\mu\nu) - \sum_{res} \mathscr{B}_{res}$$

The spectrum

Of semileptonic B_s^0 decays

SM "predictions"

And where they are coming from

- μ_G can be obtained from $B_s^{*0} B_s^0$ hyperfine splitting.
- μ_{π} can be obtained from the B_s^0/B^0 and D_s^0/D^0 mass differences
- ρ_D can be linked to the decay constant
- For ρ_{LS} we take the value from B^0 and increase the uncertainty due to $SU(3)_F$ breaking effects

•
$$(m_{B_s^{*0}}^2 - m_{B_s^0}^2) = \frac{4}{3}\mu_G^2(B_s^0) + \mathcal{O}(1/m_b)$$

 $\mu_G^2(B_s^0) = (0.35 \pm 0.07) \text{ GeV}^2$

•
$$\mu_{\pi}^{2}(B_{s}^{0}) = (0.58 \pm 0.10) \text{ GeV}^{2}$$

•
$$\rho_D^3(B_s^0) \simeq (0.26 \pm 0.03) \text{ GeV}^3$$

•
$$\rho_{LS}^3(B_s) \simeq -(0.13 \pm 0.10) \text{ GeV}^3$$

Fit to spectrum

And value of moments

- Conf. A uses the currently known experimental precision
- L=0 and L=1Conf. A M_2' M_3' Conf. B M_3' Moments M_1 [GeV²] 4.79 ± 0.02 4.82 ± 0.08 0.74 4.78 ± 0.02 0.550.45 M_2' [GeV⁴] 1.36 ± 0.29 1.22 ± 0.05 0.900.96 0.82 ± 0.09 M_3' [GeV⁶] 4.7 ± 1.8 3.86 ± 0.28 1.07 ± 0.11
- Conf. B a future with improved precisions
- L = 0 and L = 1 only considers spin 0 and spin 1 resonances
- Using these values, and constraining μ_G and ρ_{LS} we can obtain "measurements" for all HQE parameters

Fit to spectrum

And value of HQE parameters

- We obtain:
- $\mu_{\pi}^2 = (0.46 \pm 0.12) \text{ GeV}^2 \text{ vs } (0.58 \pm 0.10) \text{ GeV}^2 \text{ (predicted)}$ and therefore $\frac{\mu_{\pi}^2(B_s^0)}{\mu_{\pi}^2(B^0)} \sim 0.96$
- $\rho_D^3 = (0.16 \pm 0.06) \text{ GeV}^3 \text{ vs } (0.26 \pm 0.03) \text{ GeV}^3 \text{ (predicted)}$ and therefore $\frac{\rho_D^3(B_s^0)}{\rho_D^3(B^0)} \sim 0.86$
- The constrained values of μ_G and ρ_{LS} are very close to their input values.

V_{cb} and correlation Between HQE parameters

- Using the experimentally measured $\mathcal{B}(B_s^0 \to X_c \ell \nu) = (9.6 \pm 0.8)\%$
- We calculate $V_{cb} = (41.8 \pm 2.0) \cdot 10^{-3}$
- Largely driven by branching fraction number.
- Strong correlation between ρ_D^3 and μ_π^2

Towards precision

Many interesting things to tackle

- $\mathcal{B}(B_s^0 \to D_s^+ \mu^- \nu)$ and $\mathcal{B}(B_s^0 \to D_s^{*+} \mu^- \nu)$ are the dominating contributions. Need a precise measurement of the branching fractions (mostly experimental task)
- (Improved) measurements of $\mathcal{B}(B_s^0 \to D_s^{**+} \mu^- \nu)$, and measurements / predictions of $\mathcal{B}(D_{s0}^+ \to D_s^+ X)$ and $\mathcal{B}(D_{s1}^{'+} \to D_s^+ Y)$ (theory & experiment)
- Improved theoretical & experimental treatment of $B_s^0 \to D^{(*)0} K \mu^- \nu$ decay

Conclusion

- Presence of mostly narrow resonances in $B_s^0 \to X_c \ell \nu$ allows for a sum-of-exclusives approach to an inclusive measurement.
- Performed a proof-of-concept study, using literature values as input to the spectrum and the SM "predictions".
- Most input measurements can be theoretically and/or experimentally improved.
- With these improvements precise values for the HQE parameters (and V_{cb} ?) can be obtained.

BACKUP

Decay channels

D_{s0}^{*+} $D_{s1}^{'+}$		D_{s1}^+		D_{s2}^{*+}			
2317.8	$\pm 0.5 \mathrm{MeV}$	$2459.5 \pm 0.6 \mathrm{MeV}$		$2535.11 \pm 0.06 \mathrm{MeV}$		$2569.1 \pm 0.8 \mathrm{MeV}$	
$< 3.8 \mathrm{MeV}$ $< 3.5 \mathrm{MeV}$		$5\mathrm{MeV}$	$0.92 \pm 0.05\mathrm{MeV}$		$16.9 \pm 0.7 \mathrm{MeV}$		
$D_s^+ \pi^0$	$100^{+0}_{-20}\%$	$D_s^{*+}\pi^0$	$48\pm11\%$	$D^{*+}K_{ m S}^0$	$85\pm12\%$	D^0K^+	seen
$D_s^+ \gamma$	< 5%	$D_s^+ \gamma$	$18 \pm 4\%$	$D^{*0}K^+$	100%	$D^+K_{ m S}^0$	seen
$D_s^{*+}\gamma$	< 6%	$D_s^+\pi^+\pi^-$	$4.3\pm1.3\%$	$D^+\pi^-K^+$	$2.8\pm0.5\%$	$D^{*+}K_{ m S}^0$	seen
$D_s^+ \gamma \gamma$	< 18%	$D_s^{*+}\gamma$	< 8%	$D_s^+\pi^+\pi^-$	seen		
		$D_{s0}^{*+}\gamma$	$3.7^{+5.0}_{-2.4}\%$	D^+K^0	< 34%		
				D^0K^+	< 12%		

Numbers before update by BESIII