Theory of Exclusive $c \rightarrow u\ell^+\ell^-$ Transitions

Anshika Bansal 24/10/2024

Talk at "LHCb Implications 2024", CERN (23-25 Oct. 2024)

Why $c \to u\ell^+\ell^-$?

- $c \to u \ell^+ \ell^-$ are the Flavour Changing Neutral Current (FCNC) decays in the up-sector: Rare decays
- FCNCs are loop level processes: Provides excellent opportunities for BSM searches.
- However, in the up sector FCNCs are more challenging:
 - 1. Stronger GIM cancellations
 - 2. Interplay of light quark resonances

Why $c \to u \ell^+ \ell^-$?

- $c \to u\ell^+\ell^-$ are the Flavour Changing Neutral Current (FCNC) decays in the up-sector: Rare decays
- FCNCs are loop level processes: Provides excellent opportunities for BSM searches.
- However, in the up sector FCNCs are more challenging:
 - 1. Stronger GIM cancellations
 - 2. Interplay of light quark resonances

Major differences in the FCNCs in the up and down quark sectors

FCNC in B-decays	FCNC in D-decays
Short distance dominated	Long distance dominated
Weak annihilation contribution is negligible	Weak annihilation is the main contribution
Loop contribution is the major source of long-distance uncertainties	Loop contribution is suppressed due to GIM cancellation
Highly suppressed in SM and provides an excellent opportunity for BSM searches	BSM search is not straightforward because of pollution due to long distance effects.
Cleaner signal at experiments	Experimentally challenging due to resonances

[See talk by L. Madhan & S. Celani (A. Tinari & M. Hoferichter) for Exp. (Theory) status of $b \to s\ell\ell$

[See talk by A. Scarabotto for Exp. status]

Why $c \to u \ell^+ \ell^-$?

- $c \to u\ell^+\ell^-$ are the Flavour Changing Neutral Current (FCNC) decays in the up-sector: Rare decays
- FCNCs are loop level processes: Provides excellent opportunities for BSM searches.
- However, in the up sector FCNCs are more challenging:
 - 1. Stronger GIM cancellations
 - 2. Interplay of light quark resonances

Major differences in the FCNCs in the up and down quark sectors

FCNC in B-decays	FCNC in D-decays
Short distance dominated	Long distance dominated
Weak annihilation contribution is negligible	Weak annihilation is the main contribution
Loop contribution is the major source of long-distance uncertainties	Loop contribution is suppressed due to GIM cancellation
Highly suppressed in SM and provides an excellent opportunity for BSM searches	BSM search is not straightforward because of pollution due to long distance effects.
Cleaner signal at experiments	Experimentally challenging due to resonances

[See talk by L. Madhan & S. Celani (A. Tinari & M. Hoferichter) for Exp. (Theory) status of $b \to s\ell\ell$

[See talk by A. Scarabotto for Exp. status]

 $\bullet \ \ \text{Some examples: } D^0 \to \ell^+\ell^-, D^+ \to \pi^+\ell^+\ell^-, \Lambda_c^+ \to p\ell^+\ell^-, D^0 \to \pi^+\pi^-\ell^+\ell^-, \text{ etc.}$

Why $c \to u \ell^+ \ell^-$?

- $c \to u \ell^+ \ell^-$ are the Flavour Changing Neutral Current (FCNC) decays in the up-sector: Rare decays
- FCNCs are loop level processes: Provides excellent opportunities for BSM searches.
- However, in the up sector FCNCs are more challenging:
 - 1. Stronger GIM cancellations
 - 2. Interplay of light quark resonances

Major differences in the FCNCs in the up and down quark sectors

FCNC in B-decays	FCNC in D-decays
Short distance dominated	Long distance dominated
Weak annihilation contribution is negligible	Weak annihilation is the main contribution
Loop contribution is the major source of long-distance uncertainties	Loop contribution is suppressed due to GIM cancellation
Highly suppressed in SM and provides an excellent opportunity for BSM searches	BSM search is not straightforward because of pollution due to long distance effects.
Cleaner signal at experiments	Experimentally challenging due to resonances

[See talk by L. Madhan & S. Celani (A. Tinari & M. Hoferichter) for Exp. (Theory) status of $b \to s\ell\ell$

[See talk by A. Scarabotto for Exp. status]

• Some examples: $D^0 \to \ell^+ \ell^- \underbrace{D^+ \to \pi^+ \ell^+ \ell^-} \Lambda_c^+ \to p \ell^+ \ell^-, D^0 \to \pi^+ \pi^- \ell^+ \ell^-$, etc. [H. Gisbert,

[H. Gisbert, M. Golz, D. Mitzel, 2011.09478],[G. Hiller et. al., 2202.02331, 2410.00115],[S. Fajfer, et. al., 2312.07501]

$D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$

- Dominated by weak singly Cabibbo suppressed (SCS) $D \to \pi$ transition combined with an electromagnetic emission of the lepton pair.
- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V (\to \ell^+ \ell^-)$ (with $V = \rho, \omega, \phi, \ldots$).

V	$BR(D^+ \to \pi^+ V)$	$BR(V \to \mu^+ \mu^-)$	$BR(D^+ \to \pi^+ V)_{V \to \mu^+ \mu^-}$	
$\rho^0(770)$	$(8.3 \pm 1.4) \times 10^{-4}$	$(4.55 \pm 0.28) \times 10^{-5}$	$(3.78 \pm 0.68) \times 10^{-8}$	
$\omega(782)$	$(2.8 \pm 0.6) \times 10^{-4}$	$(7.4 \pm 1.8) \times 10^{-5}$	$(2.1 \pm 0.7) \times 10^{-8}$	
$\phi(1020)$	$(5.7 \pm 0.14) \times 10^{-3}$	$(2.85 \pm 0.19) \times 10^{-4}$	$(1.62 \pm 0.12) \times 10^{-6}$] [F

$D \to \pi \ell^+ \ell^-$: Simplest decay mode to study $c \to u \ell^+ \ell^-$

- Dominated by weak singly Cabibbo suppressed (SCS) $D \to \pi$ transition combined with an electromagnetic emission of the lepton pair.
- A simple mechanism: $D \to \pi \ell^+ \ell^- \approx D \to \pi V (\to \ell^+ \ell^-)$ (with $V = \rho, \omega, \phi, \ldots$).

V	$BR(D^+ \to \pi^+ V)$	$BR(V \to \mu^+ \mu^-)$	$BR(D^+ \to \pi^+ V)_{V \to \mu^+ \mu^-}$	
$\rho^0(770)$	$(8.3 \pm 1.4) \times 10^{-4}$	$(4.55 \pm 0.28) \times 10^{-5}$	$(3.78 \pm 0.68) \times 10^{-8}$	
$\omega(782)$	$(2.8 \pm 0.6) \times 10^{-4}$	$(7.4 \pm 1.8) \times 10^{-5}$	$(2.1 \pm 0.7) \times 10^{-8}$	
$\phi(1020)$	$(5.7 \pm 0.14) \times 10^{-3}$	$(2.85 \pm 0.19) \times 10^{-4}$	$(1.62 \pm 0.12) \times 10^{-6}$	[PI

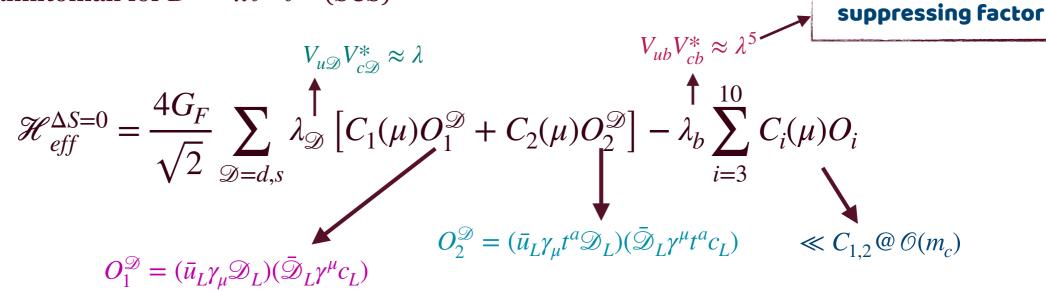
• SM predictions below and above resonances :

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [0.250^2, 0.525^2]} = (8.1^{5.9}_{-6.1}) \times 10^{-9}$$
$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 > 1.25^2} = (2.7^{+4.0}_{-2.6}) \times 10^{-9}$$

[A. Bharucha, D. Boito, C. Méaux (2011.12856)]

Effective Operators

• The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)



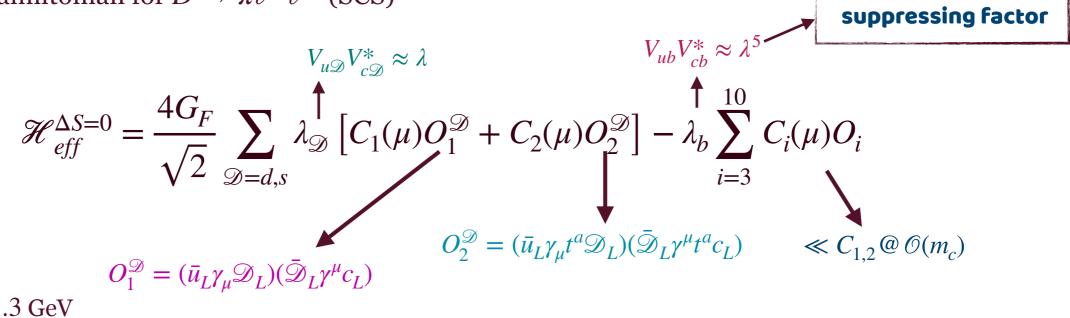
WCs @ $\mu = 1.3 \text{ GeV}$

	C_1	C_2	C_3	C_4	C_5	C_6
LL	-1.035	1.094	-0.004	-0.061	0.000	0.001
NLL	-0.712	1.038	-0.006	-0.093	0.000	0.001
NNLL	(-0.633)	1.034	-0.008	-0.093	0.000	0.001
	$C_7^{ m eff}$	$C_8^{ m eff}$	C_9	C_{10}	$C_9^{ m NNLL}$	$C_{10}^{ m NNLL}$
LL	0.078	-0.055	-0.098	0	(-0.488)	0
NLL	0.051	-0.062	-0.309	0	-0.400	U

[S. de Boer, B. Müller, D. Siegel, (1606.05521)]

Effective Operators

• The effective Hamiltonian for $D \to \pi \ell^+ \ell^-$ (SCS)



WCs @ $\mu = 1.3 \text{ GeV}$

	C_1	C_2	C_3	C_4	C_5	C_6
LL	-1.035	1.094	-0.004	-0.061	0.000	0.001
NLL	-0.712	1.038	-0.006	-0.093	0.000	0.001
NNLL	-0.633	1.034	-0.008	-0.093	0.000	0.001
	$C_7^{ m eff}$	$C_8^{ m eff}$	C_9	C_{10}	$C_9^{ m NNLL}$	$C_{10}^{ m NNLL}$
LL	0.078	-0.055	-0.098	0	(-0.488)	0
NLL	0.051	-0.062	-0.309	0	-0.400	0

[S. de Boer, B. Müller, D. Siegel, (1606.05521)]

• Hamiltonian in the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):

$$\mathcal{H}_{eff}^{(\Delta_s=0,\lambda_b=0)} = \frac{4G_F}{\sqrt{2}} \lambda_d \left[C_1 (O_1^d - O_1^s) + C_2 (O_2^d - O_2^s) \right]$$

• The largest effect beyond GIM limit $\sim \lambda_b C_9$ ($C_9 = -0.488$): The short distance contribution.

Most commonly adopted approach

• Treat the resonances as a correction to C_9 .

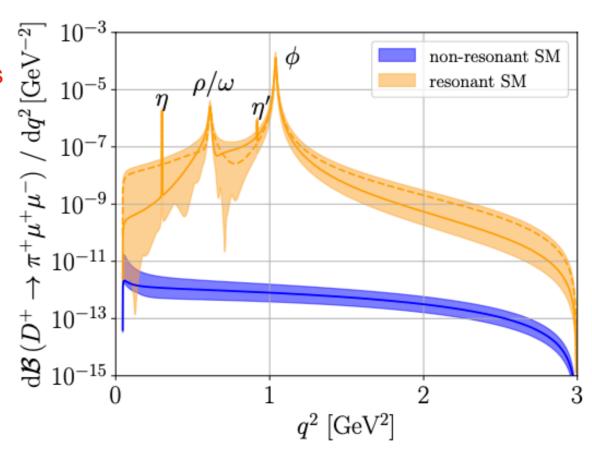
[G. Hiller et al. 1510.00311, 1909.11108, 2410.00115] [S. Fajfer, N. Kośnik, 1510.00965]

• Model the resonances $\rho, \omega, \phi, \eta, \eta'$, using Breit Wigner parametrization.

$$C_9^R(q^2) = a_{\rho} e^{i \delta_{\rho}} \left(\frac{1}{q^2 - m_{\rho}^2 + i m_{\rho} \Gamma_{\rho}} - \frac{1}{3} \frac{1}{q^2 - m_{\omega}^2 + i m_{\omega} \Gamma_{\omega}} \right) + \frac{a_{\phi} e^{i \delta_{\phi}}}{q^2 - m_{\phi}^2 + i m_{\phi} \Gamma_{\phi}} ,$$

$$C_P^R(q^2) = \frac{a_{\eta} e^{i \delta_{\eta}}}{q^2 - m_{\eta}^2 + i m_{\phi} \Gamma_{\eta}} + \frac{a_{\eta'}}{q^2 - m_{\eta'}^2 + i m_{\eta'} \Gamma_{\eta'}} ,$$

• The major source of uncertainties: unknown strong phases



[R. Bause, M. Golz, G. Hiller, A. Tayduganov 1909.11108]

Most commonly adopted approach

• Treat the resonances as a correction to C_9 .

[G. Hiller et al. 1510.00311, 1909.11108, 2410.00115] [S. Fajfer, N. Kośnik, 1510.00965]

• Model the resonances $\rho, \omega, \phi, \eta, \eta'$, using Breit Wigner parametrization.

$$C_9^R(q^2) = a_{\rho} e^{i \delta_{\rho}} \left(\frac{1}{q^2 - m_{\rho}^2 + i m_{\rho} \Gamma_{\rho}} - \frac{1}{3} \frac{1}{q^2 - m_{\omega}^2 + i m_{\omega} \Gamma_{\omega}} \right) + \frac{a_{\phi} e^{i \delta_{\phi}}}{q^2 - m_{\phi}^2 + i m_{\phi} \Gamma_{\phi}} ,$$

$$C_P^R(q^2) = \frac{a_{\eta} e^{i \delta_{\eta}}}{q^2 - m_{\eta}^2 + i m_{\phi} \Gamma_{\eta}} + \frac{a_{\eta'}}{q^2 - m_{\eta'}^2 + i m_{\eta'} \Gamma_{\eta'}} ,$$

- The major source of uncertainties: unknown strong phases
- Ways to look for new physics:
 - \circ Put kinematical cuts $(q^2>m_\phi^2)$: Branching fraction less polluted by resonances \Longrightarrow More sensitivity to new physics
 - Null Tests: Look for observables like CP asymmetries, lepton flavour universality ratios, based on approximate symmetries of SM.



[R. Bause, M. Golz, G. Hiller, A. Tayduganov 1909.11108]

A similar approach at Experiments

• Most recent upper bound on $(D^+ \to \pi^+ \mu^+ \mu^-)$: vetoing the resonance region (using integrated luminosity of 1.6 fb⁻¹).

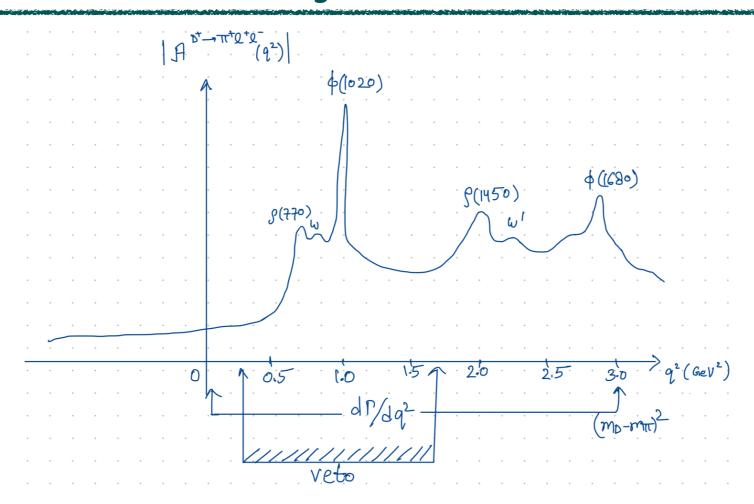
[LHCb, (JHEP06 (2021) 044)]

• Upper bounds from PDG:

Decay mode	Cabibbo hierarchy	BR, exp. upper limit
$D^+ \to \pi^+ \ell^+ \ell^-$	SCS	$1.1 \times 10^{-6} (\ell = e)$
		$6.7 \times 10^{-8} (\ell = \mu)$
$D^+ \to K^+ \ell^+ \ell^-$	DCS	$8.5 \times 10^{-7} (\ell = e)$
		$5.4 \times 10^{-8} (\ell = \mu)$
$D^0 \to \bar{K}^0 \ell^+ \ell^-$	CF	$2.4 \times 10^{-5} (\ell = e)$
		$2.6 \times 10^{-4} (\ell = \mu)$
$D^0 \to \pi^0 \ell^+ \ell^-$	SCS	$4 \times 10^{-6} (\ell = e)$
		$1.8 \times 10^{-4} (\ell = \mu)$
$D^0 \to \eta \ell^+ \ell^-$	SCS	$3 \times 10^{-6} (\ell = e)$
		$5.3 \times 10^{-4} (\ell = \mu)$
$D^0 o \eta' \ell^+ \ell^-$	SCS	-
$D^0 \to K^0 \ell^+ \ell^-$	DCS	-
$D_s^+ \to \pi^+ \ell^+ \ell^-$	CF	$5.5 \times 10^{-6} (\ell = e)$
		$1.8 \times 10^{-7} (\ell = \mu)$
$D_s^+ \to K^+ \ell^+ \ell^-$	SCS	$3.7 \times 10^{-6} (\ell = e)$
		$1.4 \times 10^{-7} (\ell = \mu)$

[PDG]

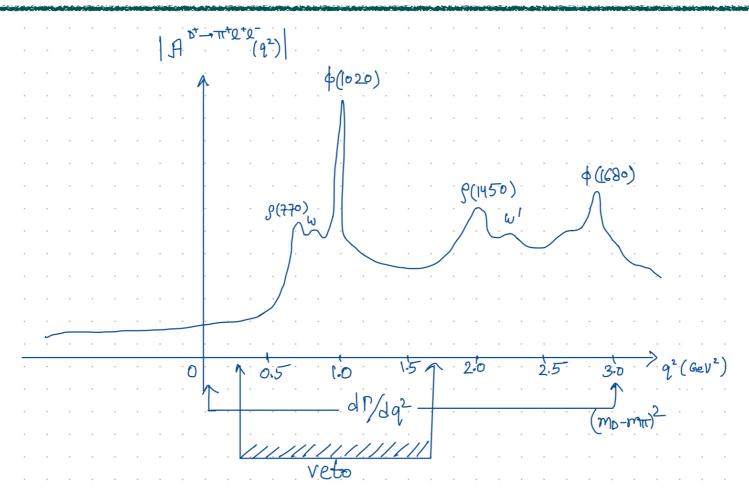
Can we really isolate resonances?



• The full amplitude represented via hadronic dispersion relation:

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\phi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$

Can we really isolate resonances?

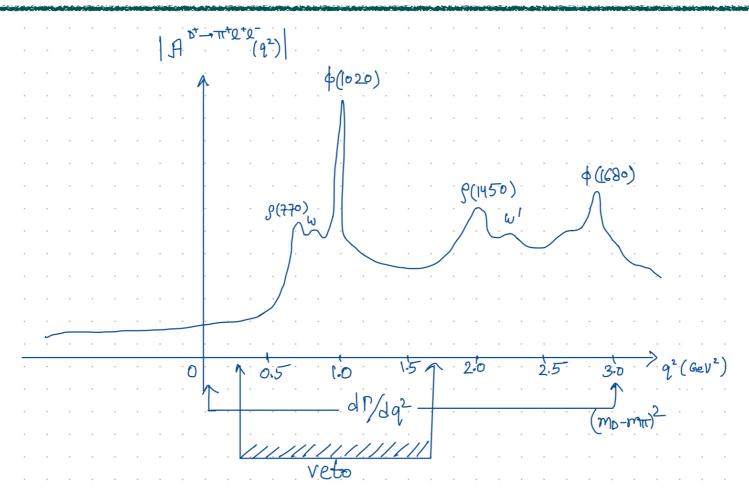


• The full amplitude represented via hadronic dispersion relation:

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| \, e^{i\phi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s > (m_D m_\pi)^2$ are indispensable.

Can we really isolate resonances?



• The full amplitude represented via hadronic dispersion relation:

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| \, e^{i\phi_V}}{(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q^2 - i\epsilon)}$$

- Dispersion relation tells us: vetoing a certain q^2 region does not remove resonances from the amplitude.
- The radial excitations of ρ , ω , ϕ and the "tail" at $s>(m_D-m_\pi)^2$ are indispensable.

Is a QCD based analysis possible?

Amplitude and Hadronic Matrix Element

• In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:,

$$\mathcal{A}(D^+ \to \pi^+ \ell^+ \ell^-) = \left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_\ell \gamma^\mu \nu_\ell}{q^2} \mathcal{A}_\mu^{D^+ \to \pi^+ \gamma^*}(p,q)$$

Amplitude and Hadronic Matrix Element

• In the GIM limit ($\lambda_b = 0, \lambda_d = -\lambda_s$):,

$$\mathcal{A}(D^{+} \to \pi^{+} \mathcal{E}^{+} \mathcal{E}^{-}) = \left(\frac{16\pi\alpha_{em}G_{F}}{\sqrt{2}}\right) \lambda_{d} \frac{\bar{u}_{\ell} \gamma^{\mu} \nu_{\ell}}{q^{2}} \mathcal{A}_{\mu}^{D^{+} \to \pi^{+} \gamma^{*}}(p,q)$$

The hadronic part (hadronic matrix element)

$$\mathcal{A}_{\mu}^{D^{+}\to\pi^{+}\gamma^{*}}(p,q) = i \int d^{4}x e^{iq.x} \langle \pi^{+}(p) | T \left\{ j_{\mu}^{em}(x), \mathcal{H}_{eff}^{(\Delta_{s}=0,\lambda_{b}=0)} \right\} | D^{+}(p+q) \rangle$$

$$= \left[(p \cdot q)q_{\mu} - q^{2}p_{\mu} \right] \mathcal{A}_{\mathcal{D}}^{D^{+}\to\pi^{+}\gamma^{*}}(q^{2}) \quad \text{(Due to conservation of EM current)}$$

Amplitude and Hadronic Matrix Element

• In the GIM limit $(\lambda_b = 0, \lambda_d = -\lambda_s)$:,

$$\mathcal{A}(D^+ \to \pi^+ \mathcal{E}^+ \mathcal{E}^-) = \left(\frac{16\pi\alpha_{em}G_F}{\sqrt{2}}\right) \lambda_d \frac{\bar{u}_\ell \gamma^\mu \nu_\ell}{q^2} \left(\mathcal{A}_\mu^{D^+ \to \pi^+ \gamma^*}(p,q)\right)$$

The hadronic part (hadronic matrix element)

$$\mathcal{A}_{\mu}^{D^{+}\to\pi^{+}\gamma^{*}}(p,q) = i \int d^{4}x e^{iq.x} \langle \pi^{+}(p) | T \left\{ j_{\mu}^{em}(x), \mathcal{H}_{eff}^{(\Delta_{s}=0,\lambda_{b}=0)} \right\} | D^{+}(p+q) \rangle$$

$$= \left[(p.q)q_{\mu} - q^{2}p_{\mu} \right] \mathcal{A}_{\mathcal{D}}^{D^{+}\to\pi^{+}\gamma^{*}}(q^{2}) \quad \text{(Due to conservation of EM current)}$$

The non-local form factor:

dominated by long distance effects in the physical region of q^2 .

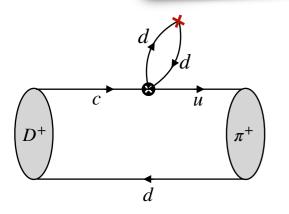
$$(4m_{\ell}^2 < q^2 < (m_D - m_{\pi})^2)$$

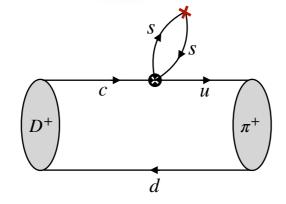
The object of our interest

Quark Topologies for $\mathcal{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p,q)$

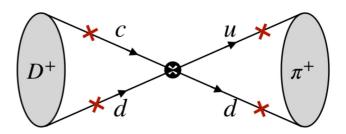
Loop Topology

(Only possible in SCS decays)





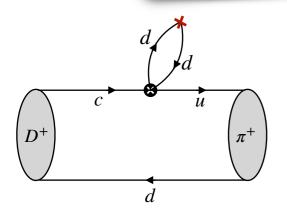
Annihilation Topology

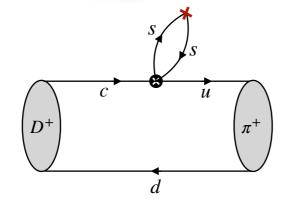


Quark Topologies for $\mathcal{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p,q)$

Loop Topology

(Only possible in SCS decays)

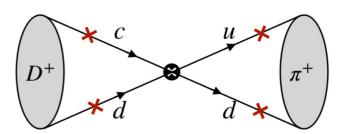




In the $SU(3)_f$ (along with $\lambda_b \approx 0$), a complete GIM cancellation

L-topology has non-zero contribution only due to $m_s \neq m_d$.

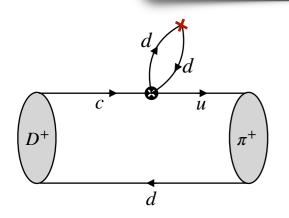
Annihilation Topology

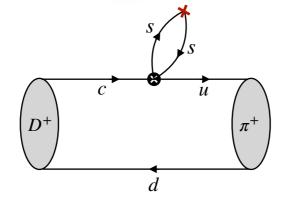


Quark Topologies for $\mathcal{A}_{\mu}^{D^+ \to \pi^+ \gamma^*}(p,q)$

Loop Topology

(Only possible in SCS decays)

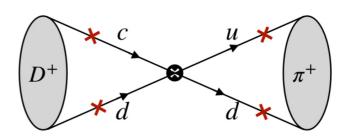




In the $SU(3)_f$ (along with $\lambda_b \approx 0$), a complete GIM cancellation

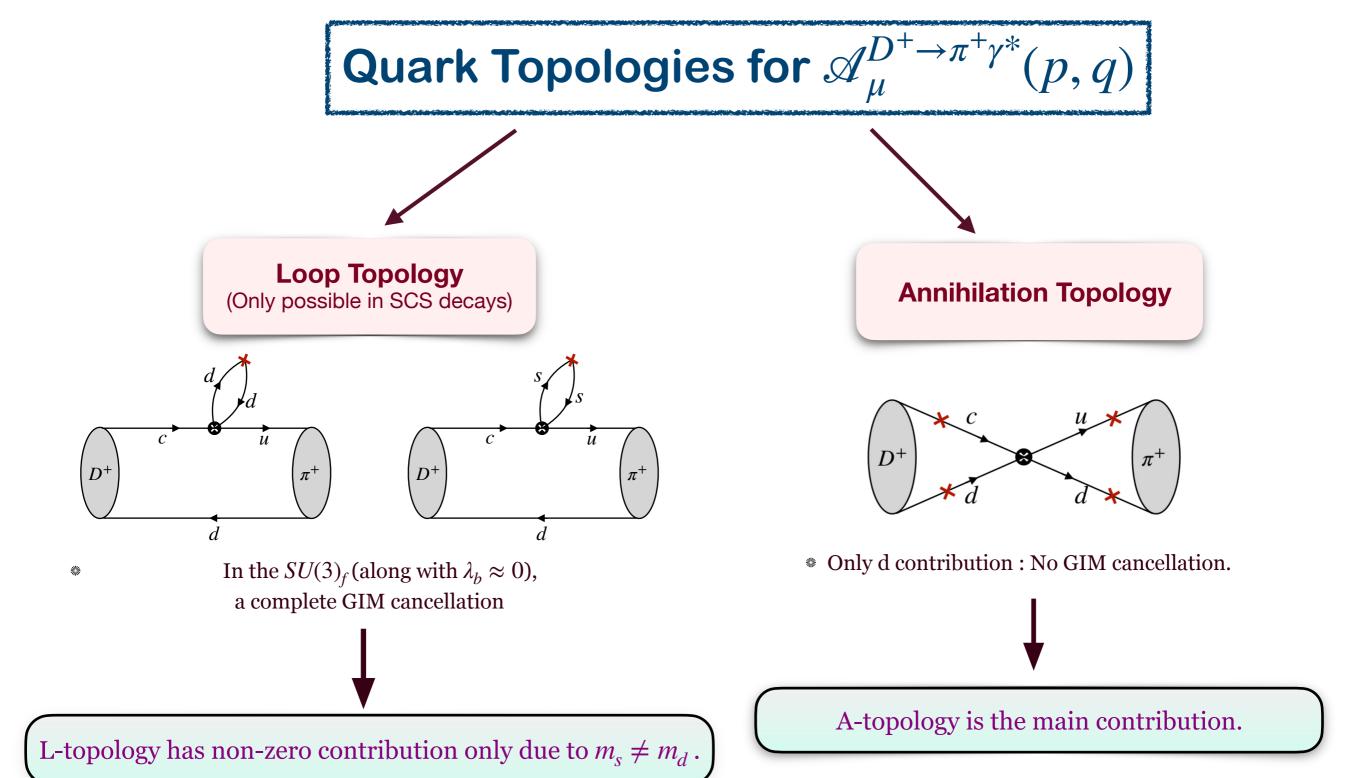
L-topology has non-zero contribution only due to $m_s \neq m_d$.

Annihilation Topology



Only d contribution : No GIM cancellation.

A-topology is the main contribution.



* At NLO, there will be multiple diagrams with the exchange of virtual gluons: Out of the scope of the present study.

- Available estimates are are based on QCD factorization.
- The method was originally suggested for $B \to K^* \ell^+ \ell^-$ decays. [M. Beneke, T. Feldmann, D. Seidel (hep-ph/0106067)]
- The result for $b \to s\ell\ell$ were then first used for $D \to \rho\ell\ell$: The resonances were modelled using Shifman's infinite resonance model. [T. Feldmann, B. Müller, D. Seidel (1705.05891)]

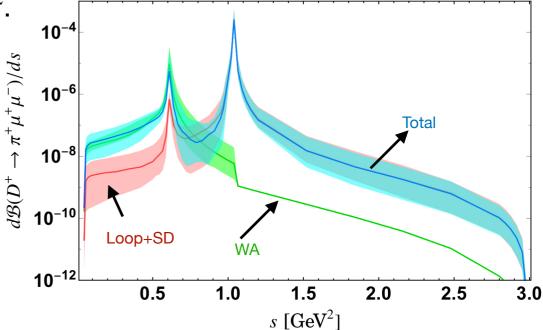
- Available estimates are are based on QCD factorization.
- The method was originally suggested for $B \to K^* \mathcal{E}^+ \mathcal{E}^-$ decays. [M. Beneke, T. Feldmann, D. Seidel (hep-ph/0106067)]
- The result for $b \to s\ell\ell$ were then first used for $D \to \rho\ell\ell$: The resonances were modelled using Shifman's infinite resonance model. [T. Feldmann, B. Müller, D. Seidel (1705.05891)]
 - Weak Annihilation contribution are dominating

- · Available estimates are are based on QCD factorization.
- The method was originally suggested for $B \to K^* \ell^+ \ell^-$ decays. [M. Beneke, T. Feldmann, D. Seidel (hep-ph/0106067)]
- The result for $b \to s\ell\ell$ were then first used for $D \to \rho\ell\ell$: The resonances were modelled using Shifman's infinite resonance model. [T. Feldmann, B. Müller, D. Seidel (1705.05891)]
 - Weak Annihilation contribution are dominating
- Later used for $D \to \pi \ell \ell$: QCDf for low q^2 and OPE for high q^2 .
 - O Used $e^+e^- \to$ hadrons and $\tau \to \nu_{\tau}$ + hadrons data to fit the infinite resonance model parameters

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [0.250^2, 0.525^2]} = (8.1^{5.9}_{-6.1}) \times 10^{-9}$$

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 > 1.25^2} = (2.7^{+4.0}_{-2.6}) \times 10^{-9}$$

[A. Bharucha, D. Boito, C. Méaux (2011.12856)]

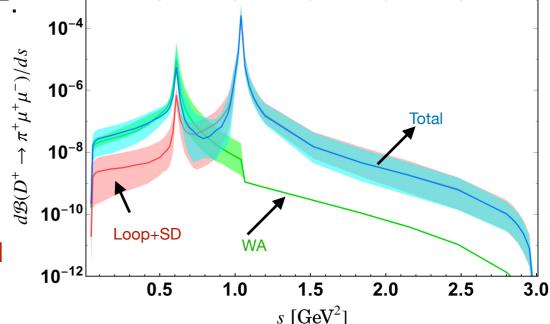


- Available estimates are are based on QCD factorization.
- The method was originally suggested for $B \to K^* \ell^+ \ell^-$ decays. [M. Beneke, T. Feldmann, D. Seidel (hep-ph/0106067)]
- The result for $b \to s\ell\ell$ were then first used for $D \to \rho\ell\ell$: The resonances were modelled using Shifman's infinite resonance model. [T. Feldmann, B. Müller, D. Seidel (1705.05891)]
 - Weak Annihilation contribution are dominating
- Later used for $D \to \pi \ell \ell$: QCDf for low q^2 and OPE for high q^2 .
 - $^{\rm o}$ Used $e^+e^-\to$ hadrons and $\tau\to\nu_\tau$ + hadrons data to fit the infinite resonance model parameters

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [0.250^2, 0.525^2]} = (8.1^{5.9}_{-6.1}) \times 10^{-9}$$

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 > 1.25^2} = (2.7^{+4.0}_{-2.6}) \times 10^{-9}$$

[A. Bharucha, D. Boito, C. Méaux (2011.12856)]



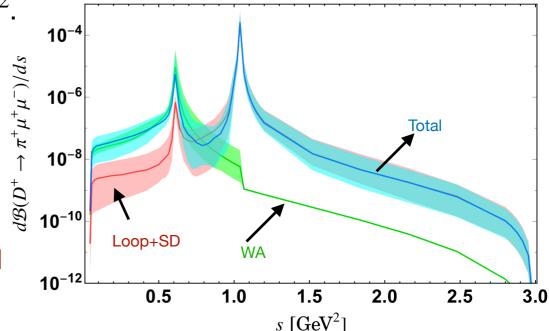
- Includes only one of the four annihilation diagrams (emission from the initial d-quark):
 - * What about the other three diagrams? Are they really negligible like in $b \to s\ell\ell$?
- $\frac{1}{m_c}$ corrections eg. from the use of D-meson distribution amplitudes:
 - * Expected to be large (at least compared to the B-meson case).

- Available estimates are are based on QCD factorization.
- The method was originally suggested for $B \to K^* \mathcal{E}^+ \mathcal{E}^-$ decays. [M. Beneke, T. Feldmann, D. Seidel (hep-ph/0106067)]
- The result for $b \to s\ell\ell$ were then first used for $D \to \rho\ell\ell$: The resonances were modelled using Shifman's infinite resonance model. [T. Feldmann, B. Müller, D. Seidel (1705.05891)]
 - Weak Annihilation contribution are dominating
- Later used for $D \to \pi \ell \ell$: QCDf for low q^2 and OPE for high q^2 .
 - ° Used $e^+e^-\to$ hadrons and $\tau\to\nu_\tau$ + hadrons data to fit the infinite resonance model parameters

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 \in [0.250^2, 0.525^2]} = (8.1^{5.9}_{-6.1}) \times 10^{-9}$$

$$BR(D^+ \to \pi^+ \mu^+ \mu^-)_{q^2 > 1.25^2} = (2.7^{+4.0}_{-2.6}) \times 10^{-9}$$

[A. Bharucha, D. Boito, C. Méaux (2011.12856)]



- Includes only one of the four annihilation diagrams (emission from the initial d-quark):
 - * What about the other three diagrams? Are they really negligible like in $b \to s\ell\ell$?
- $\frac{1}{m_c}$ corrections eg. from the use of D-meson distribution amplitudes:
 - * Expected to be large (at least compared to the B-meson case).

As the Experimental bounds are now approaching theory predictions, it is important to look for alternative QCD based methods.

The use of U-spin

[In preparation, AB, Alexander Khodjamirian and Thomas Mannel]

• Combining: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ with $SU(3)_{fl}$ limit, $m_s = m_{u,d}$

(Only annihilation topology)

• The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L) (\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L) (\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L) (\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

The use of U-spin

[In preparation, AB, Alexander Khodjamirian and Thomas Mannel]

Combining: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ with $SU(3)_{fl}$ limit, $m_s = m_{u,d}$

(Only annihilation topology)

• The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L)(\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L)(\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L)(\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L)(\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

• As
$$j_{\mu}^{em}$$
 is a U-singlet $\implies j_{\mu}^{em}(x)O_1^{(U=1)}$ is U-triplet

• As j_{μ}^{em} is a U-singlet $\implies j_{\mu}^{em}(x)O_1^{(U=1)}$ is U-triplet \longrightarrow Two ways to make $\langle P^+|j_{\mu}^{em}(x)O_1^{(U=1)}|D^+\rangle$ U-spin singlet

$$\langle P_{(U=1/2)}^{+} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D_{(U=1/2)}^{+} \rangle$$

$$\langle P_{(U=1)}^{+} | j_{\mu}^{em}(x) O_{1}^{(U=1)} | D^{0} \rangle$$

The use of U-spin

[In preparation, AB, Alexander Khodjamirian and Thomas Mannel]

• Combining: GIM limit, $\lambda_b = 0$, $\lambda_d = -\lambda_s$ with $SU(3)_{fl}$ limit, $m_s = m_{u,d}$

(Only annihilation topology)

• The Hamiltonians of CF, SCS, and DSC modes form a U-triplet:

$$O_1^{(U=1)} \equiv \begin{pmatrix} (\bar{u}_L \gamma_\mu s_L)(\bar{d}_L \gamma^\mu c_L) \\ \frac{1}{\sqrt{2}} \left[(\bar{u}_L \gamma_\mu d_L)(\bar{d}_L \gamma^\mu c_L) - (\bar{u}_L \gamma_\mu s_L)(\bar{s}_L \gamma^\mu c_L) \right] \\ (\bar{u}_L \gamma_\mu d_L)(\bar{s}_L \gamma^\mu c_L) \end{pmatrix} = \begin{pmatrix} |1, +1\rangle \\ -|1, 0\rangle \\ |1, -1\rangle \end{pmatrix}$$

• As j_{μ}^{em} is a U-singlet $\implies j_{\mu}^{em}(x)O_1^{(U=1)}$ is U-triplet

Two ways to make $\langle P^+ | j_{\mu}^{em}(x) O_1^{(U=1)} | D^+ \rangle$ U-spin singlet

$$\langle P_{(U=1/2)}^+ | j_{\mu}^{em}(x) O_1^{(U=1)} | D_{(U=1/2)}^+ \rangle$$

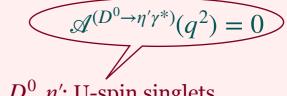
$$\langle P_{(U=1)}^+ | j_{\mu}^{em}(x) O_1^{(U=1)} | D^0 \rangle$$

U-spin relations

$$\mathcal{A}^{(D^{+}\to\pi^{+}\gamma^{*})}(q^{2}) = -\mathcal{A}^{(D_{s}^{+}\to K^{+}\gamma^{*})}(q^{2}) = \mathcal{A}^{(D_{s}^{+}\to\pi^{+}\gamma^{*})}(q^{2}) = \mathcal{A}^{(D^{+}\to K^{+}\gamma^{*})}(q^{2})$$

$$\mathcal{A}^{(D^{0}\to\bar{K}^{0}\gamma^{*})}(q^{2}) = \mathcal{A}^{(D^{0}\to K^{0}\gamma^{*})}(q^{2}) = -\frac{1}{2}\mathcal{A}^{(D^{0}\to\pi^{0}\gamma^{*})}(q^{2}) + \frac{\sqrt{3}}{2}\mathcal{A}^{(D^{0}\to\eta^{0}\gamma^{*})}(q^{2})$$

$$\mathcal{A}^{(D^{0}\to\eta_{8}\gamma^{*})}(q^{2}) = -\sqrt{3}\mathcal{A}^{(D^{0}\to\pi^{0}\gamma^{*})}(q^{2})$$



 D^0 , η' : U-spin singlets.

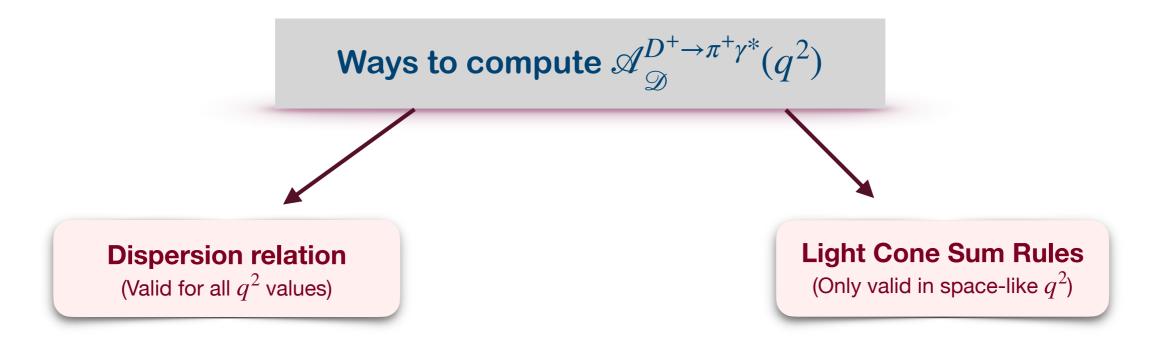
Other $D_{(s)} \to P\ell^+\ell^-$ channels $(P = \pi, K, \eta)$, Cabibbo favoured (CF) and doubly Cabibbo suppressed (DCS) are also interesting: can help to disentangle the annihilation topology.

$D \to \pi \ell^+ \ell^-$ using LCSR supported Dispersion relation

[In preparation, AB, Alexander Khodjamirian and Thomas Mannel]

• Benefits:

- An independent alternative to QCDf.
- $^{\circ}$ Finite m_c .



Dispersion relation

(Valid for all q^2 values)

Light Cone Sum Rules

(Only valid in space-like q^2)

$$\mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathscr{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \left[\sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| \, e^{i\phi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \right]$$

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho}=1/\sqrt{2}, k_{\omega}=1/(3\sqrt{2}), k_{\phi}=-1/3$: Normalized to the valence quark content of V

Dispersion relation

(Valid for all q^2 values)

Light Cone Sum Rules

(Only valid in space-like q^2)

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big[\sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \right) \Big]$$

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

$$k_{\rho}=1/\sqrt{2}, k_{\omega}=1/(3\sqrt{2}), k_{\phi}=-1/3$$
: Normalized to the valence quark content of V

Challenges:

- Unknown strong phases
- · Unknown spectral densities: too complicated to be parameterised.

(Valid for all q^2 values)

Light Cone Sum Rules

(Only valid in space-like q^2)

$$\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) = \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q_0^2) + (q^2 - q_0^2) \Big[\sum_{V = \rho, \omega, \phi} \frac{\kappa_V f_V |A_{DV\pi}| e^{i\varphi_V}}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \left(\int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} \right) \Big]$$

$$|A_{DV\pi}| = \left(\frac{8\pi BR(D^+ \to V\pi^+)}{\tau(B)G_F^2 |V_{cs}|^2 |V_{ud}|^2 m_{D^+}^3 \lambda_{D^+V\pi^+}^{3/2}}\right)^{1/2}$$

 $k_{\rho} = 1/\sqrt{2}, k_{\omega} = 1/(3\sqrt{2}), k_{\phi} = -1/3$: Normalized to the valence quark content of V

Challenges:

- Unknown strong phases
- Unknown spectral densities: too complicated to be parameterised.

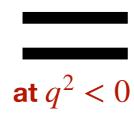
using **z-parametrization** (valid only for $q^2 < s_0^h$)

$$\int_{s_0^h}^{\infty} ds \frac{\rho_h(s)}{(s - q_0^2)(s - q^2 - i\epsilon)} = \sum_{k=0}^K a_k [z(q^2)]^k$$

with,
$$z(q^2) = \frac{\sqrt{s_0^h - q^2} - \sqrt{s_0^h}}{\sqrt{s_0^h - q^2} + \sqrt{s_0^h}} \quad a_k = \text{Complex coefficients}$$

Dispersion relation

(Valid for all q^2 values)



Light Cone Sum Rules

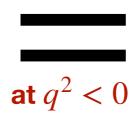
(Only valid in space-like q^2)

- Fit the unknown parameters using the data from LCSR computation.
- Make predictions for $q^2 > 0$ using the fitted parameters in the dispersion relation.

Our methodology: LCSR-supported dispersion relation

Dispersion relation

(Valid for all q^2 values)



Light Cone Sum Rules

(Only valid in space-like q^2)

- Fit the unknown parameters using the data from LCSR computation.
- Make predictions for $q^2 > 0$ using the fitted parameters in the dispersion relation.

Summary of the Main idea:

<u>Step-1</u>: Compute $\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ using Light Cone Sum Rules (valid only for $q^2 < 0$)

<u>Step-2</u>: Write the hadronic dispersion relation in terms of unknown phases and z-parameters (valid for all values of q^2).

Step-3: Match the LCSR results with the dispersion relation at $q^2 < 0$ and estimate the unknown parameters.

<u>Step-4</u>: Estimate $\mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2)$ in the physical region using dispersion relation.

(Resembling partly the analysis of nonlocal effects in $B \to K^{(*)} \mathcal{C}^+ \mathcal{C}^-$)

[A. Khodjamirian, T. Mannel, A. Pivovarov, Y. Wang, 1211.0234]

[A. Khodjamirian, A. V. Rusov, 1703.04765], N. Gubernari, M. Rebound, D. van Dyk, J. Virto, 2011.09813

* The correlation function:

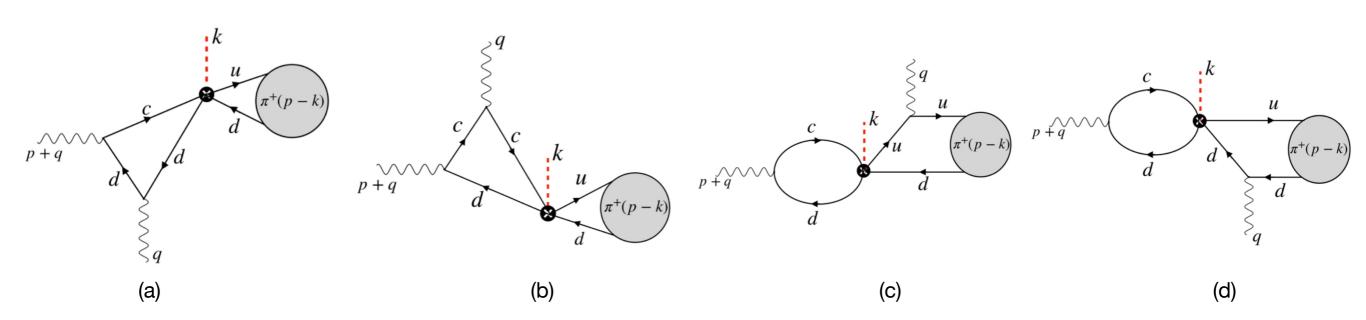
$$F_{\mu}(p,q,k) = -\int\!\!d^4x\,e^{iq\cdot x}\!\!\int\!\!d^4y\,e^{-i(p+q)\cdot y}\langle\pi^+(p-k)\,|\,T\{J_{\mu}^{em}(x)\mathcal{H}_{eff}^{(\Delta_s=0,\lambda_b=0)}(0)J_5^D(y)\}\,|\,0\rangle$$

$$\sum_{q=u,d,c}Q_q\bar{q}(x)\gamma_{\mu}q(x)$$

$$im_c\bar{c}(y)\gamma_5d(y)$$

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)



Weak Annihilation Diagrams (LO) in terms of pion DAs

* The correlation function:

$$F_{\mu}(p,q,k) = -\int\!\!d^4x\,e^{iq\cdot x}\!\!\int\!\!d^4y\,e^{-i(p+q)\cdot y}\langle\pi^+(p-k)\,|\,T\{J_{\mu}^{em}(x)\mathcal{H}_{eff}^{(\Delta_s=0,\lambda_b=0)}(0)J_5^D(y)\}\,|\,0\rangle$$

$$\sum_{q=u,d,c}Q_q\bar{q}(x)\gamma_{\mu}q(x)$$

$$im_c\bar{c}(y)\gamma_5d(y)$$

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

* The artificial momentum k is introduced at the four vertex to avoid parasitic contributions in the dispersion relation. (Used before in LCSR analysis of $B \to 2\pi$ and $D \to 2\pi$, $K\bar{K}$)

[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

Weak Annihilation Diagrams (LO) in terms of pion DAs

* The correlation function:

$$F_{\mu}(p,q,k) = -\int\!\!d^4x\,e^{iq\cdot x}\!\!\int\!\!d^4y\,e^{-i(p+q)\cdot y}\langle\pi^+(p-k)\,|\,T\{J_{\mu}^{em}(x)\mathcal{H}_{eff}^{(\Delta_s=0,\lambda_b=0)}(0)J_5^D(y)\}\,|\,0\rangle$$

$$\sum_{q=u,d,c}Q_q\bar{q}(x)\gamma_{\mu}q(x)$$

$$im_c\bar{c}(y)\gamma_5d(y)$$

Only O_1^d contributes. The O_2^d contribution vanishes after Fierz transformation.

Light cone OPE

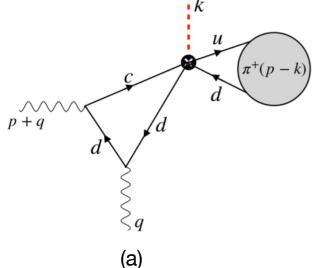
(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

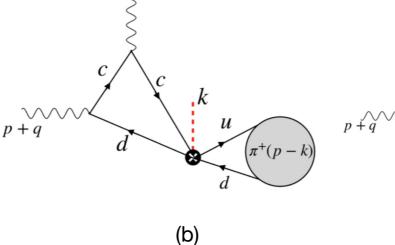
* The artificial momentum k is introduced at the four vertex to avoid parasitic contributions in the dispersion relation. (Used before in LCSR analysis of $B \to 2\pi$ and $D \to 2\pi$, $K\bar{K}$)

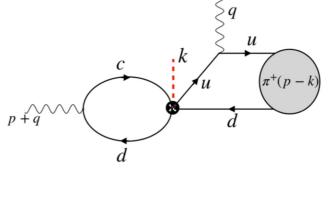
[A. Khodjamirian, arXiv: hep-ph/0012271]

[A. Khodjamirian, M. Melcher, B. Melic, arXiv: hep-ph/0304179, hep-ph/0509049]

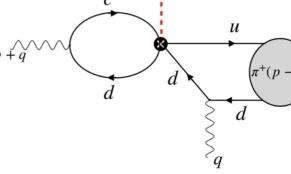
[A. Khodjamirian, A. A. Petrov, arXiv: 1706.07780]







(c)



Weak Annihilation Diagrams (LO) in terms of pion DAs

(d)

* The correlation function:

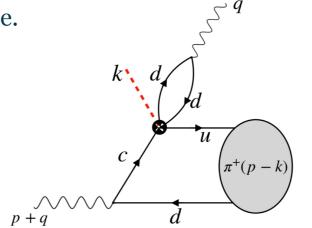
$$F_{\mu}(p,q,k) = -\int\!\! d^4x\, e^{iq\cdot x}\!\! \int\!\! d^4y\, e^{-i(p+q)\cdot y} \langle \pi^+(p-k)\,|\, T\{J_{\mu}^{em}(x)\mathcal{H}_{eff}^{(\Delta_s=0,\lambda_b=0)}(0)J_5^D(y)\}\,|\, 0\rangle$$

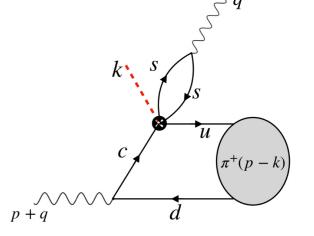
$$\sum_{q=u,d,c} Q_q \bar{q}(x)\gamma_{\mu}q(x) \qquad im_c \bar{c}(y)\gamma_5 d(y)$$

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

- The correlation function factorises into loop function and a simpler $D \to \pi$ matrix element.
- Both Wilson Coefficients (C_1 and C_2) contribute in this case.
- The contribution is small due to GIM suppression.





Loop Diagrams (LO) in terms of pion DAs

TOOLS TO DERIVE LCSR

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.)

$$\frac{1}{\pi} \int_{m_c^2}^{\infty} ds \frac{Im F^{(OPE)}(s, q^2, P^2 = m_D^2)}{s - (p + q)^2} = \frac{m_D^2 f_D A^{(D^+ \to \pi^+ \gamma^*)}(q^2)}{m_D^2 - (p + q)^2} + \int_{s_{h_d}}^{\infty} ds \frac{\rho_{h_D}(s, q^2, P^2 = m_D^2)}{s - (p + q)^2}$$

TOOLS TO DERIVE LCSR

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.)

Quark Hadron Duality

(Relates ground state hadronic matrix element in D-meson channel to the integral over perturbatively calculated correlation function)

TOOLS TO DERIVE LCSR

Light cone OPE

(Computing correlation function as a convolution of perturbative hard scattering kernel and pion DAs)

Dispersion Relation in D-meson channel

(Enables to relate the calculated correlation function to the sum over $D \to \pi \gamma^*$ hadronic matrix elements.)

Quark Hadron Duality

(Relates ground state hadronic matrix element in D-meson channel to the integral over perturbatively calculated correlation function)

Borel Transformation

(To suppress the effect of continuum and higher resonances to reduce the uncertainty due to duality approximation)

LCSR Results

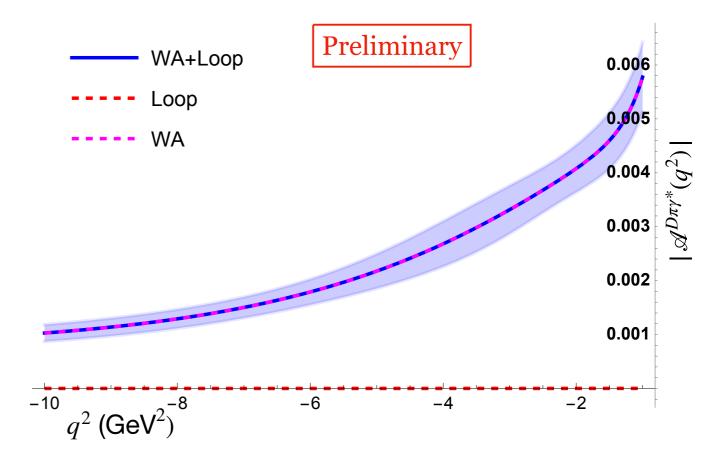
• The final sum rule read as (for $q^2 < 0$):

$$m_D^2 f_D \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \operatorname{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$M^2 = (4.5 \pm 1.0) \text{ GeV}^2$$

$$s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$$



LCSR Results

• The final sum rule read as (for $q^2 < 0$):

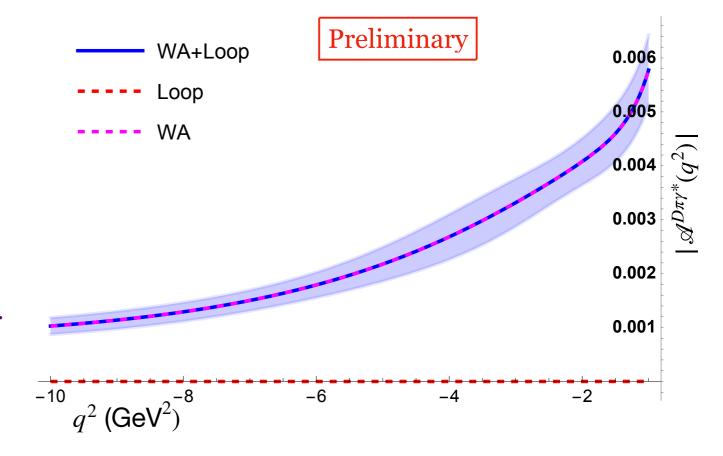
$$m_D^2 f_D \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \operatorname{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$M^2 = (4.5 \pm 1.0) \text{ GeV}^2$$

$$s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$$

- F^{OPE} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.



LCSR Results

• The final sum rule read as (for $q^2 < 0$):

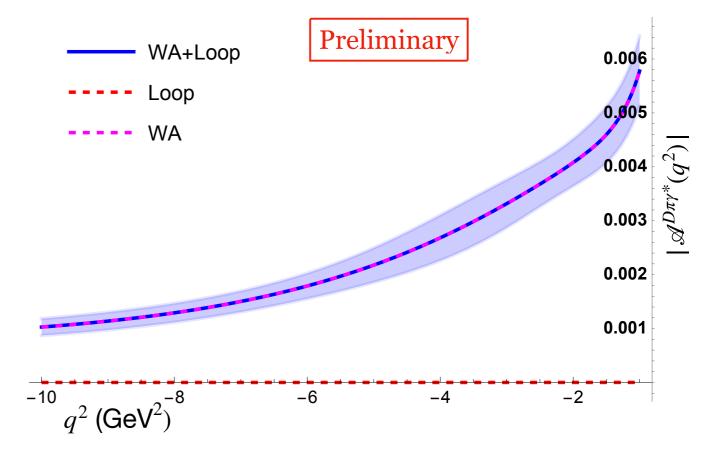
$$m_D^2 f_D \mathcal{A}^{(D^+ \to \pi^+ \gamma^*)}(q^2) e^{-m_D^2/M^2} = \frac{1}{\pi} \int_{m_c^2}^{s_0^D} ds e^{-s/M^2} \operatorname{Im}(F^{(OPE)}(s, q^2, m_D^2))$$

• M^2 (Borel parameter) and s_0^D (effective threshold) are the sum rule parameters taken to be:

$$M^2 = (4.5 \pm 1.0) \text{ GeV}^2$$

$$s_0^D = (4.95 \pm 0.35) \text{ GeV}^2$$

- F^{OPE} include contribution from twist-2 distribution amplitude (DA) of pion (using 2 Gegenbauer moments).
- The major source of calculated LCSR uncertainties are the uncertainties in s_0^D and the DA parameters.



• The contribution to the decay amplitude from O_9 varies from $\sim 1.5 \times 10^{-6}$ to $\sim 7.5 \times 10^{-6}$ at $0 < q^2 < (m_D - m_\pi)^2$: at least three order of magnitudes smaller than the WA+loop amplitude

Preliminary Results

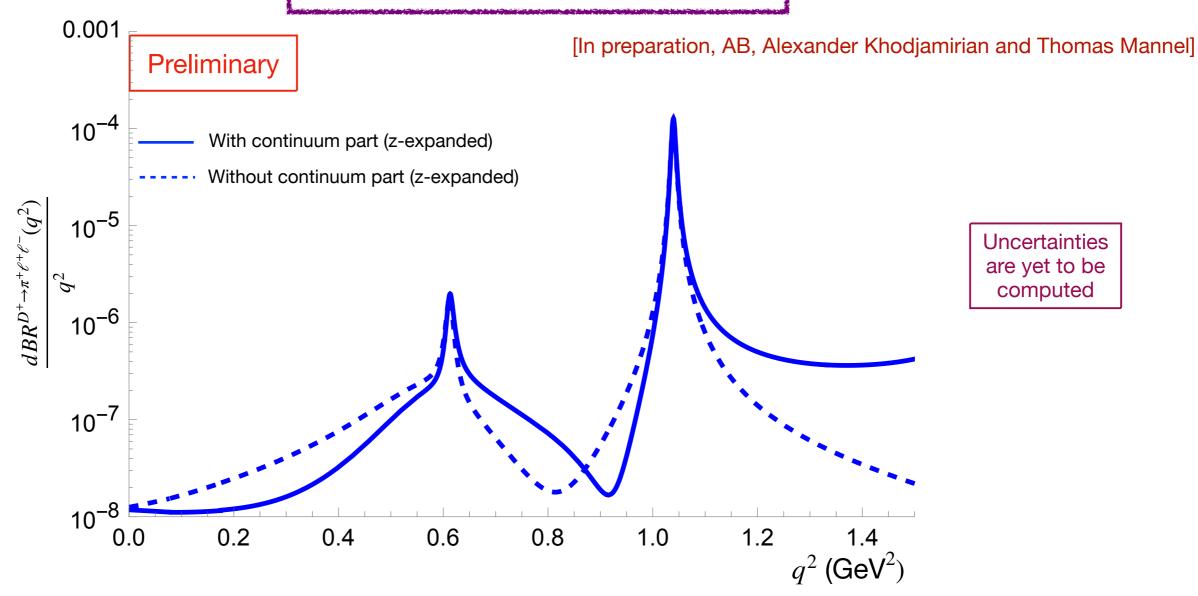


Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

- Our method works only for $q^2 < m_{\rho'}^2$ due to the restrictions of z-expansion.
- The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.

Preliminary Results

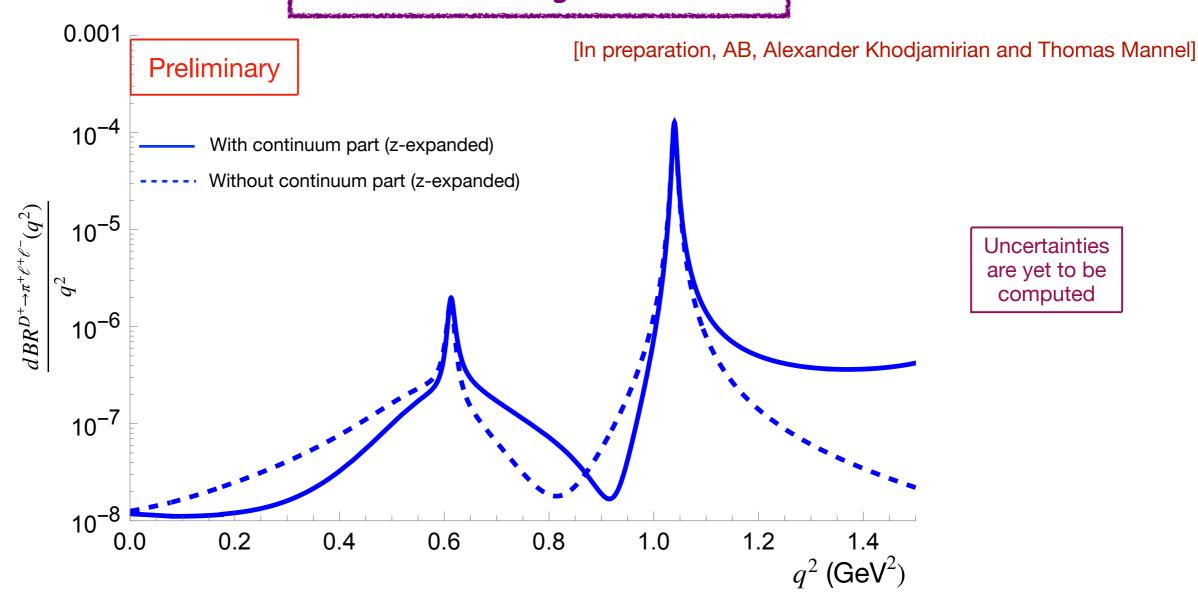


Figure: The results for the differential branching fraction using the dispersion relation with the fitted parameters

- Our method works only for $q^2 < m_{\rho'}^2$ due to the restrictions of z-expansion.
- The low q^2 region is generated by the "tail" of the resonances, the intermediate and high q^2 region is influenced by excited states.
- The low q^2 region $((0.250)^2 \le q^2 \le (0.525)^2$), integrated branching fraction $\sim 4.0 \times 10^{-9}$ ($\sim \frac{1}{2}$ times the QCDf predictions) [Preliminary].

- * We suggest to study $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * The amplitude is mainly dominated by the weak annihilation topology generated by $O_{1,2}$, "Short distance" contributions e.g. due to O_9 are tiny.

- * We suggest to study $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * The amplitude is mainly dominated by the weak annihilation topology generated by $O_{1,2}$, "Short distance" contributions e.g. due to O_9 are tiny.
- Work yet to be done:
 - Uncertainties in the branching fraction estimates.
 - * Prediction for $D_s \to \pi \ell^+ \ell^-$ (CF) modes as a byproduct by setting $m_s \neq 0$ in LCSR.

- * We suggest to study $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * The amplitude is mainly dominated by the weak annihilation topology generated by $O_{1,2}$, "Short distance" contributions e.g. due to O_9 are tiny.
- Work yet to be done:
 - Uncertainties in the branching fraction estimates.
 - * Prediction for $D_s \to \pi \ell^+ \ell^-$ (CF) modes as a byproduct by setting $m_s \neq 0$ in LCSR.
- Future perspectives:
 - * Perturbative and soft-gluon corrections to annihilation.
 - * Estimates for other CF and SCS modes.
 - * Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').
 - * Extend the method to $D \to PP\ell^+\ell^-$

- * We suggest to study $D^+ \to \pi^+ \ell^+ \ell^-$ decays using LCSR supported dispersion relation.
- * The amplitude is mainly dominated by the weak annihilation topology generated by $O_{1,2}$, "Short distance" contributions e.g. due to O_9 are tiny.
- Work yet to be done:
 - Uncertainties in the branching fraction estimates.
 - * Prediction for $D_s \to \pi \ell^+ \ell^-$ (CF) modes as a byproduct by setting $m_s \neq 0$ in LCSR.
- Future perspectives:
 - * Perturbative and soft-gluon corrections to annihilation.
 - * Estimates for other CF and SCS modes.
 - * Varying resonance ansatz in the dispersion relation (including ρ', ω', ϕ').
 - * Extend the method to $D \to PP\ell^+\ell^-$

Message for LHCb analysis

There is no way to isolate long distance effects in $D_{(s)} \to P\ell^+\ell^-$ decays by simply vetoing resonances, one needs measurements of the differential decay rates in the whole q^2 region.

Thank you for your attention of

Thank you for your attention of

