Beauty Meson Spectroscopy at LHCb

LHCb Implication Workshop

CERN

Oct.24th, 2024

Yuhao Wang

on behalf of the LHCb collaboration

QCD and Hadron Spectroscopy

- QCD is in principle expected to fully describe the spectrum and properties of hadrons
 - ⇒ shows non-perturbative behavior at such energy scale
- Experimental measurements in hadron spectroscopy
 - ☐ Extend the knowledge of QCD
 - ☐ Provide crucial inputs to reduce the uncertainties in theory
 - ☐ Help to understand the ways in which QCD forms bound states and about their internal structure

Hadron properties

- O New state
- O New decay
- O Mass & Width (lifetime)
- O Production
- O Branching ratio
- O Quantum numbers
- O

CONVENTIONAL

EXOTIC

hybrid?

pentaquark?

mesonic molecule?

tetraquark?

Quarkonium and Beauty Meson Spectrum

- The charmonium spectrum is well-known, as is the bottomonium spectrum.
- \bullet For *B* mesons, and in particular for B_s or B_c , the knowledge is limited.

Quarkonium and Beauty Meson Spectrum

- Charmonium spectrum is pretty well know. Bottomonium spectrum as well.
- \bullet For *B* mesons, and in particular for B_s or B_c , the knowledge is limited.

Quarkonium and Beauty Meson Spectrum

- Charmonium spectrum is pretty well know. Bottomonium spectrum as well.
- \odot For *B* mesons, and in particular for B_s or B_c , the knowledge is limited.
- This talk will focus on the latest topics of beauty meson spectroscopy, includes
 - O Study of hidden beauty spectroscopy
 [JHEP 10 (2024) 12]
 - O Study of light meson resonances in the $B \to (K_S^0 K \pi) K$ decays [LHCb-PAPER-2024-045] in preparation
 - O Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^0$ decay [JHEP 04 (2024) 151]
 - O Measurement of the BF of $B^0 \rightarrow J/\psi \pi^0$ decay [JHEP 05 (2024) 065]

b-hadron production at the LHC

All types of b-hadrons, and their excitations, can be produced at the LHC

$$\Box B^0 = |\bar{b}d>, B^+ = |\bar{b}u>, B_S^0 = |\bar{b}s>, B_C^+ = |\bar{b}c> ...$$

• $\sigma(pp \to b\bar{b}X) \sim 154.3 \,\mu b$ at 13 TeV in the forward region $\Rightarrow \sim 60 \,k \,b\bar{b}/s$ inside LHCb acceptance [PhysRevLett.118.052002]

- Two approaches to study the spectroscopy
 - ☐ Inclusive analysis
 - ✓ no spin analysis for two body decays
 - ✓ large cross sections
 - ✓ signal purity may be poor
 - ☐ Exclusive analysis
 - quantum numbers assignment is possible (model-dependent)
 - √ limited statistics
 - ✓ small background

[LHC highlights and prospects]

[JHEP 10 (2024) 12]

[JHEP 10 (2024) 12]

- \square Masses measured in 1990s (CESR, DORIS, VEPP), relied on photon energy of $\Upsilon(2S)$ and $\Upsilon(3S)$
 - \rightarrow standing tensions between CESR and DORIS on $\Upsilon(1S)$ mass
- ☐ Shamov et al resolved by reanalysing the data with interference and radiative corrections considered correctly
- \square Quoted error in PDG 2024 for $\Upsilon(1S)$ decreased: 0.26 MeV \rightarrow 0.1 MeV

[Phys. Lett. B839 (2023), 137766]

 \square DORIS data is removed for $\Upsilon(2S)$, error increased: 0.31 MeV \rightarrow 0.5 MeV \odot

\bullet χ_b states

- \square Mass knowledge largely comes from study of photon energy in feed-down from Υ decays
- ☐ Measurement of mass splitting are dominated by BaBar experiment

State	Measured mass $[\text{MeV}/c^2]$					
State	PDG2024	PDG2022				
$\Upsilon(1S)$	9460.4 ± 0.1	9460.30 ± 0.26				
$\Upsilon(2S)$	10023.4 ± 0.5	10023.26 ± 0.31				
$\Upsilon(3S)$	10355.2 ± 0.5	10355.2 ± 0.5				

[JHEP 10 (2024) 12]

- Measurement of the mass and mass splittings using
 - \Box Full RunI + RunII dataset: 9 fb⁻¹
 - \square Di-muon mode: $\Upsilon \rightarrow \mu^- \mu^+$
 - \square Di-pion mode: $\Upsilon(2S) \to \Upsilon(1S)\pi^-\pi^+$, $\Upsilon(3S) \to \Upsilon(2S)\pi^-\pi^+$

Agree with PDG. Most precise result for $\Upsilon(2S)$

Similar precision to BaBar, with deviations in $2-4\,\sigma$

$$m_{\Upsilon(2S)} = 10023.25 \pm 0.03 \pm 0.12 \pm 0.09 \,\text{MeV}/c^2$$

$$m_{\Upsilon(3S)} = 10355.28 \pm 0.03 \pm 0.04 \pm 0.48 \,\text{MeV}/c^2$$

$$m_{\Upsilon(2S)} - m_{\Upsilon(1S)} = 562.84 \pm 0.02 \pm 0.13 \,\text{MeV}/c^2$$

 $m_{\Upsilon(3S)} - m_{\Upsilon(2S)} = 331.86 \pm 0.03 \pm 0.05 \,\text{MeV}/c^2$

• First observation of muonic Dalitz decay $\chi_{b1,2} \to \Upsilon(1S)\mu^-\mu^+$

[JHEP 10 (2024) 12]

$$m_{\chi_{b1}(1P)} = 9892.50 \pm 0.26 \pm 0.10 \pm 0.10 \,\text{MeV}/c^2$$

 $m_{\chi_{b2}(1P)} = 9911.92 \pm 0.29 \pm 0.11 \pm 0.10 \,\text{MeV}/c^2$
 $m_{\chi_{b1}(2P)} = 10253.97 \pm 0.75 \pm 0.22 \pm 0.09 \,\text{MeV}/c^2$
 $m_{\chi_{b2}(2P)} = 10269.67 \pm 0.67 \pm 0.22 \pm 0.09 \,\text{MeV}/c^2$

$$m_{\chi_{b2}(1P)} - m_{\chi_{b1}(1P)} = 19.4 \pm 0.4 \,\text{MeV}/c^2$$

 $m_{\chi_{b2}(2P)} - m_{\chi_{b1}(2P)} = 15.7 \pm 1.0 \,\text{MeV}/c^2$

1P: central value agree, precision is 1.6 times worse than PDG24 2P: central value agree at the level of 2.6σ , precision is 4 times worse

1P: world best value

2P: Slightly worse precision than PDG24

[LHCb-PAPER-2024-045] in preparation

New

Previous studies in $B^+ \to R^0 K^+$ decay

[LHCb-PAPER-2024-045] in preparation

 \square BaBar: interpreted as signals from $\eta(1475) \rightarrow K^*\overline{K}$ and $\eta(1295) \rightarrow \eta \pi^+\pi^-$ Phys.Rev.Lett.101(2008)091801

☐ PDG branching fractions for pseudoscalars and axial mesons

Resonance	$\mathcal{B} \times 10^{-6}$	LHCb preliminary
$\eta(1295)K^+ \times \mathcal{B}(\eta(1295) \to \eta\pi\pi)$	$2.9_{-0.7}^{+0.8}$	
$\eta(1405)K^+ \times \mathcal{B}(\eta(1405) \to \eta\pi\pi)$	$<1.3~\mathrm{CL}{=}90\%$	
$\eta(1405)K^+ \times \mathcal{B}(\eta(1405) \to K^*\bar{K})$	< 1.2) CL=90%	
$\eta(1475)K^+ \times \mathcal{B}(\eta(1475) \to K^*\bar{K})$	$13.8^{+2.1}_{-1.8}$	
$f_1(1285)K^+$	$<2.0~\mathrm{CL}{=}90\%$	
$f_1(1420)K^+ \times \mathcal{B}(f_1(1420) \to \eta \pi \pi)$	$<2.9~\mathrm{CL}{=}90\%$	
$f_1(1420)K^+ \times \mathcal{B}(f_1(1420) \to K^*\bar{K})$	$<4.1~\mathrm{CL}{=}90\%$	

Motivation

[LHCb-PAPER-2024-045] in preparation

- □ Study the light meson spectroscopy in the threshold region of the $K_S^0 K \pi$ mass spectrum in the decays of $B^+ \to (K_S^0 K^+ \pi^-) K^+$ $B^+ \to (K_S^0 K^- \pi^+) K^+$
- ☐ The interest is related to the identification of the pseudoscalar glueball and possible improvements in the understanding of the composition of the $J^{PC} = 0^{-+}$, $J^{PC} = 1^{++}$, $J^{PC} = 1^{+-}$ multiplets
- \Box The exclusive production of resonances in B decays may be calculable and help in evaluating the quark content

✓ possible source of gluonium states for $b \rightarrow s g$ process

(c) \overline{b} \overline{x} K^+ \overline{u} K^0

 \checkmark expected contributions from $s\bar{s}$ and $u\bar{u}$

• Full RunI + RunII dataset with K_{SLL}^0 and K_{SDD}^0 datasets

[LHCb-PAPER-2024-045] in preparation

- \odot Signal of $f_1(1285)$ in the threshold region
- Complex superposition of resonances in the 1.4-1.8 GeV mass region
- Asymmetric $K^{*+}(892)/K^{*0}(892)$ distributions.
- The Dalitz plots for $B^+ \to (K_S^0 K^+ \pi^-) K^+$ and $B^+ \to (K_S^0 K^- \pi^+) K^+$ are different.

⇒ Followed by a amplitude analysis

 \odot Study of the $f_1(1285)$ mass region

[LHCb-PAPER-2024-045] in preparation

- \square Well known: $J^P = 1^+$; decay to $K_S^0 K \pi$ mainly through $a_0(980)\pi$
- \square Fit with BW \otimes *R* or single BW; Amplitude analysis under three hypo.

Fitting method	χ^2/ndf	$m_0 \; [\mathrm{MeV}]$	T [MeV]
Conv	13.3/22	1283.5 ± 1.5	27.4 ± 5.6
noConv	13.6/22	1283.5 ± 1.6	32.3 ± 5.4
A 11. 1	21 4	Т.	
Amplitudes	$-2log\mathcal{L}$	Fract	ions
(a) $f_1(1285), 1^+, PS$		$0.601 \pm 0.042,$	0.392 ± 0.042
(b) $f_1(1285), 0^-, PS$		0.164 ± 0.041 ,	0.784 ± 0.104
(c) $f_1(1285)1^+$, PS ,	-649.5	$0.577 \pm 0.043,$	0.766 ± 0.101
$\eta(1295)0^{-}$		$0.129 \pm$	0.050

PDG averages:

- $m = 1281.9 \pm 0.5 \text{ MeV}$
- $\Gamma = 22.7 \pm 1.1 \text{ MeV}$

• Amplitude analysis of the full low-mass

[LHCb-PAPER-2024-045] in preparation

 \square Evaluate the differences in fractions and relative phases between the two B^+ decay modes.

Resonance	Decay	Δf	σ_1	σ_2	$\Delta \phi$	σ_1	σ_2	LHCb preliminary
$\frac{100001101100}{\eta(1475)}$	$K^*\overline{K}$	-5 $0.5 \pm 1.5 \pm 1.8$	$\frac{0.35}{0.35}$	$\frac{0.23}{0.23}$	<u>-</u> γ			, and promise.
$\eta(1410)$	$a_0\pi$	$-0.4 \pm 0.6 \pm 0.5$	0.55 0.72	0.23 0.54	$0.26 \pm 0.24 \pm 0.20$	1.10	0.84	
	PS	$6.3 \pm 2.5 \pm 3.5$	2.53	1.47	$-0.24 \pm 0.15 \pm 0.18$	1.61	1.04	
	Total	$6.4 \pm 3.0 \pm 3.9$	2.16	1.30	-	-	-	•
$\eta(1760)$	$K^*\overline{K}$	$-1.1 \pm 0.6 \pm 0.6$	1.92	1.37	$-0.37 \pm 0.21 \pm 0.34$	1.79	0.92	•
, ,	$a_0\pi$	$0.3 \pm 0.5 \pm 0.4$	0.51	0.41	$-0.95 \pm 0.19 \pm 0.31$	4.95	2.59	
	PS	$+11.3 \pm 3.0 \pm 5.8$	3.76	1.74	$-0.32 \pm 0.12 \pm 0.29$	2.62	1.01	
	Total -	$+12.1 \pm 4.4 \pm 5.8$	2.78	1.67	-	-	-	
$\eta(1405)$	$K^*\overline{K}$	$1.2 \pm 0.8 \pm 2.0$	1.50	0.55	$-0.09 \pm 0.15 \pm 0.27$	0.61	0.29	
	PS	$-1.1 \pm 0.8 \pm 1.2$	1.47	0.78	$-0.19 \pm 0.17 \pm 0.34$	1.12	0.49	
	Total	$0.1 \pm 1.1 \pm 2.3$	0.05	0.02	-	-	-	
$f_1(1285)$	$a_0\pi$	$-0.1 \pm 0.3 \pm 0.3$	0.31	0.21	$0.1 \pm 0.2 \pm 0.3$	0.70	0.36	
$f_1(1420)$	$K^*\overline{K}$	$4.8 \pm 0.9 \pm 2.7$	5.62	1.66	$-0.4 \pm 0.1 \pm 0.4$	3.28	1.11	
$h_1(1415)$	$K^*\overline{K}S$	$-8.6 \pm 1.5 \pm 4.01$	5.80	2.00	$3.0 \pm 0.1 \pm 0.6$	26.69	5.07	•
	$K^*\overline{K}D$	$1.0 \pm 0.4 \pm 0.3$	2.51	1.96	$2.4 \pm 0.11 \pm 0.5$	21.57	5.26	
	Total	$-7.7 \pm 1.5 \pm 4.1$	5.00	1.77	_	-	-	
$f_1(1510)$	$K^*\overline{K}$	$0.3 \pm 0.5 \pm 3.0$	0.57	0.09	$-0.35 \pm 0.13 \pm 0.52$	2.75	0.65	•
$h_1(1595)$	$K^*\overline{K}S$	$-9.6 \pm 1.7 \pm 3.1$	5.78	2.74	$-2.76 \pm 0.10 \pm 0.52$	27.60	5.25	
$\eta_2(1645)$	$K^*\overline{K}$	$0.8 \pm 0.3 \pm 0.8$	2.97	0.91	$0.13 \pm 0.16 \pm 0.13$	0.83	0.65	
PS		$-6.8 \pm 3.5 \pm 5.8$	1.95	1.01	$0.28 \pm 0.11 \pm 0.22$	2.46	1.13	

Partial waves decomposition

[LHCb-PAPER-2024-045] in preparation

 \square The $K_S^0K\pi$ mass spectrum is dominated by the presence of $J^{PC}=0^{-+}$, $J^{PC}=1^{++}$ and $J^{PC}=1^{+-}$ **Preliminary Preliminary Preliminary** (a) LHCb LHCb LHCb 9 fb^{-1} 9 fb^{-1} 9 fb^{-1} $--h_1(1415)$ $B^+ \rightarrow \left(K_S^0 K^- \pi^- \right) K^+$ 1.6 1.8 $m(K_S^0K^-\pi^+)$ [GeV] $\frac{1.6}{m(K_{\rm S}^0 K^- \pi^+)} \frac{1.8}{[{\rm GeV}]}$ $\frac{1.6}{m(K_{\rm S}^0 K^- \pi^+)} \frac{1.8}{[{\rm GeV}]}$ **Preliminary Preliminary Preliminary** Candidates/(6.5 MeV)

Candidates/(6.5 MeV)

Candidates/(6.5 MeV)

Candidates/(6.5 MeV) **LHC**b **L**HCb LHCb 9 fb^{-1} 9 fb⁻ 9 fb^{-1} $B^+ \rightarrow \left(K_S^0 K^+ \pi^-\right) K^+$ 1.6 1.8 $m(K_S^0K^+\pi^-)$ [GeV] $\frac{1.6}{m(K_{\rm S}^0 K^+ \pi^-)} \frac{1.8}{[{\rm GeV}]}$ $\frac{1.6}{m(K_{\rm S}^0 K^- \pi^+)} \frac{1.8}{[{\rm GeV}]}$ 1.4

• Measurements of branching fraction

[LHCb-PAPER-2024-045] in preparation

LHCb preliminary

- ☐ In LHCb-PAPER-2022-051, the total branching fractions have been measured
- \square The BF for resonance R^0 in $B^+ \to R^0 K^+$ with $R^0 \to \overline{K^0} K^+ \pi^-$

Final state	reference	$\mathcal{B}(\times 10^{-5})$
$B^+ \to K^0 K^+ K^- \pi^+$	η_c	$32.28 \pm 0.33 \pm 1.97 \pm 7.17$
	$J\!/\psi$	$34.01 \pm 0.74 \pm 0.91 \pm 3.10$
	average	$32.57 \pm 0.30 \pm 0.83 \pm 2.85$
$B^+ \to \overline{K}{}^0 K^+ K^+ \pi^-$	η_c	$26.56 \pm 0.31 \pm 0.68 \pm 5.90$
	$J\!/\psi$	$28.01 \pm 0.68 \pm 1.35 \pm 2.55$
	average	$26.81 \pm 0.28 \pm 0.61 \pm 2.34$

Contributions	$\mathcal{B}(B^+ \to R^0 K^+) \times 10^{-5}$
$B^+ \to \eta(1475)K^+ \to (K^*\overline{K})K^+$	$1.49 \pm 0.15 \pm 0.15 \pm 0.13$
$B^+ \to \eta(1475)K^+ \to (a_0(980)^-\pi^+)K^+$	$0.19 \pm 0.05 \pm 0.05 \pm 0.02$
$B^+ \to \eta(1475)K^+ \to (K^0K^-\pi^+)K^+$	$2.10 \pm 0.29 \pm 0.30 \pm 0.18$
$B^+ \to \eta(1760)K^+ \to (K^*\overline{K})K^+$	$0.27 \pm 0.05 \pm 0.04 \pm 0.02$
$B^+ \to \eta(1760)K^+ \to (a_0(980)^-\pi^+)K^+$	$0.28 \pm 0.05 \pm 0.03 \pm 0.02$
$B^+ \to \eta(1760)K^+ \to (K^0K^-\pi^+)K^+$	$1.64 \pm 0.25 \pm 0.37 \pm 0.14$
$B^+ \to \eta(1405)K^+ \to (K^*\overline{K})K^+$	$0.48 \pm 0.08 \pm 0.26 \pm 0.04$
$B^+ \to \eta(1405)K^+ \to (K^0K^-\pi^+)K^+$	$0.73 \pm 0.08 \pm 0.11 \pm 0.06$
$B^+ \to f_1(1285)K^+ \to (a_0(980)^-\pi^+)K^+$	$0.27 \pm 0.03 \pm 0.02 \pm 0.02$
$B^+ \to f_1(1420)K^+ \to (K^*\overline{K})K^+$	$1.58 \pm 0.10 \pm 0.30 \pm 0.14$
$B^+ \to f_1(1510)K^+ \to (K^*\overline{K})K^+$	$0.40 \pm 0.05 \pm 0.16 \pm 0.03$
$B^+ \to h_1(1415)K^+ \to (K^*\overline{K})K^+$	$1.84 \pm 0.14 \pm 0.27 \pm 0.16$
$B^+ \to h_1(1595)K^+ \to (K^*\overline{K})K^+$	$0.73 \pm 0.11 \pm 0.12 \pm 0.06$
$B^+ \to \eta_2(1645)K^+ \to (K^*\overline{K})K^+$	$0.22 \pm 0.03 \pm 0.11 \pm 0.02$

Observation of $B_c^+ \to J/\psi \pi^+ \pi^0$ decay

[JHEP 04 (2024) 151]

Observation of $B_c^+ \to J/\psi \pi^+ \pi^0$ decay

Motivation

 \square Tree-level $b \rightarrow c$ transition

☐ Various prediction values

 \Rightarrow spin-counting: $3 \times \mathcal{B}(B_c^+ \to J/\psi \pi^+)$

☐ Study the structure of intermediate states

 \Rightarrow potential tiny contribution from $\rho(1450)$ [PhysRevD.61.112002]

* Full RunI + RunII dataset: 9 fb⁻¹

[JHEP 04 (2024) 151]

Observation of $B_c^+ \to J/\psi \pi^+ \pi^0$ decay

Strategy

 \square Measure the ratio of branching fractions between $B_c^+ \to J/\psi \pi^+ \pi^0$ and $B_c^+ \to J/\psi \pi^+$

$$\frac{\mathcal{B}(B_c^+ \to J/\psi \rho^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = \frac{N_{\rho^+}}{N_{\pi^+}} \cdot \frac{\epsilon_{\pi^+}}{\epsilon_{\rho^+}}$$

- □ The B^+ → $J/\psi K^{*+}$ (→ $K^+\pi^0$) decay is used to correct the detector resolution
- \square The possible contribution from $\rho(1450)$ is considered in simulation

Results

□ The $B_c^+ \to J/\psi \pi^+ \pi^0$ decay is dominated by $B_c^+ \to J/\psi \rho^+$ with a small admixture of $B_c^+ \to J/\psi \rho (1450)^+$

$$\mathcal{R} = \frac{\mathcal{B}_{B_c^+ \to J/\psi \pi^+ \pi^0}}{\mathcal{B}_{B_c^+ \to J/\psi \pi^+}} = 2.80 \pm 0.15 \pm 0.11 \pm 0.16$$

[JHEP 04 (2024) 151]

Measurement of the BF of $B^0 o J/\psi \pi^0$ decay

[JHEP 05 (2024) 065]

Measurement of the BF of $B^0 \rightarrow J/\psi \pi^0$ decay

[JHEP 05 (2024) 065]

- Motivation
 - \square Constrain the phase shift from hadronic penguin topologies to improve the precision of CPV measurements (sin(2β)) in the golden channel $B^0 \to J/\psi K_S^0$
 - □ The BaBar and Belle collaborations reported evidence of indirect CP-violation in $B^0 \to J/\psi \pi^0$ decays (comparable with $B^0 \to J/\psi K_S^0$), as well as the branching fraction.
- Goal: new measurement competitive with Belle 2018 results using RunI & II dataset

$\Gamma(~B^0 o J/\psi(1S)\pi^0)/\Gamma_{ m total}$						Γ_{223}/Γ	-	
		Cl%	DOCUMENT ID		TECN	COMMENT		
$\textbf{1.66} \pm \textbf{0.10}$	OUR AVERAG	E						
$1.62\ {\pm}0.11\ {\pm}0.06$			1 PAL	2018	BELL	$e^+\;e^- o \varUpsilon(4S)$		
$1.69\ {\pm}0.14\ {\pm}0.07$			1 AUBERT	2008AU	BABR	$e^+ \; e^- o \varUpsilon(4S)$		
$2.5 \ ^{+1.1}_{-0.9} \ \pm 0.2$			1 AVERY	2000	CLE2	$e^+\;e^- o \varUpsilon(4S)$		

[Phys. Rev. D 107 (2023) 052008]

Measurement of the BF of $B^0 \rightarrow J/\psi \pi^0$ decay

[JHEP 05 (2024) 065]

- Strategy
 - \square Measure the ratio of branching fractions between $B^0 \to J/\psi \pi^0$ and $B^+ \to J/\psi K^{*0}$

$$\frac{\mathcal{B}(B^0 \to J/\psi \pi^0)}{\mathcal{B}(B^+ \to J/\psi K^{*+})} = \frac{N_{B^0}}{N_{B^+}} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B^0}} \cdot \mathcal{B}(K^{*+} \to K^+ \pi^0)$$

- \square Enlarge the π^0 mass window to part-reco, combinatorial and random photon background
- Results

$$\frac{\mathcal{B}_{B^0 \to J/\psi \pi^0}}{\mathcal{B}_{B^+ \to J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048) \times 10^{-2}$$

Competitive with the most precise single measurement

$$\mathcal{B}_{B^0 \to J/\psi \pi^0} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5}$$

Summary and prospect

- Recent beauty meson spectroscopy results presented in this talk
 - ☐ Mass measurements:

$$\checkmark \Upsilon(2S), \Upsilon(3S), \chi_h(1P), \chi_h(2P)$$

☐ New decay modes:

$$\checkmark B_c^+ \rightarrow J/\psi \pi^+ \pi^0$$

$$\checkmark \chi_b \rightarrow \Upsilon(1S)\mu^-\mu^+$$

- \square $BR(B^0 \rightarrow J/\psi \pi^0)$ (improved)
- ☐ New information in light meson spectroscopy
- In RunIII, the LHCb experiment will keep making important contributions to heavy hadron spectroscopy with
 - ☐ Higher luminosity
 - ☐ Upgraded detector (e.g. UT)
 - ☐ Improved techniques (e.g. full reconstruction in software trigger)
 - **—**
- Today's discovery, tomorrow's precision tool to test QCD

Thanks a lot for your attention!

Backup

The LHCb detector

• A general purpose detector covering the forward region: $2 < \eta < 5$

[JJMPA 30 (2015) 1530022] [JINST 3 (2008) S08005]

- Excellent tracking, particle identification and trigger systems
- Perfect conditions for both precision measurements & observations of new states/decays
- Successful operation in RunI and RunII with various collision systems (pp, p-Pb, Pb-Pb)
- So far 75 hadrons have been discovered at the LHC, of which 67 by LHCb

LHCb dataset

• RunI: 3 fb⁻¹ pp collision @ 7,8 TeV

• RunII: 6 fb⁻¹ pp collision @ 13 TeV

https://lbgroups.cern.ch/online/OperationsPlots/index.htm

Observation of $B_c^+ \to \chi_c \pi^+$ decay

[JHEP 02 (2024) 173]

Observation of $B_c^+ \to \chi_c \pi^+$ decay

[JHEP 02 (2024) 173]

Motivation

- □ The $B_c^+ \to \chi_{c1,2} \pi^+$ decay with $\chi_{c1,2} \to J/\psi \gamma$ channel never were studied (only evidence for $B_c^+ \to \chi_{c0} (\to K^+ K^-) \pi^+$)
- \square The partial width ratio of $\Lambda_b^0 \to \chi_{c2} p K^- / \Lambda_b^0 \to \chi_{c1} p K^-$ or $\Lambda_b^0 \to \chi_{c2} p \pi^- / \Lambda_b^0 \to \chi_{c1} p \pi^-$ are measured to be almost equal

$$\frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c2} p \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} p \pi^{-}\right)} = 0.95 \pm 0.30 \pm 0.04 \pm 0.04$$
$$\frac{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c2} p K^{-}\right)}{\mathcal{B}\left(\Lambda_{\rm b}^{0} \to \chi_{\rm c1} p K^{-}\right)} = 1.06 \pm 0.05 \pm 0.04 \pm 0.04$$

 \square The partial widths for $B^0 \to \chi_{c2} K^{*0}$ show significant suppression compared to $B^0 \to \chi_{c1} K^{*0}$

$$\frac{\mathcal{B}(B^0 \to \chi_{c2} K^{*0})}{\mathcal{B}(B^0 \to \chi_{c1} K^{*0})} = (9.74 \pm 2.86 (stat) \pm 0.97 (syst)) \times 10^{-2} \times \frac{\mathcal{B}(\chi_{c1} \to J/\psi\gamma)}{\mathcal{B}(\chi_{c2} \to J/\psi\gamma)}$$

$$= (17.1 \pm 5.0 (stat) \pm 1.7 (syst) \pm 1.1 (\mathcal{B})) \times 10^{-2},$$

⇒ additional measurements are required to test the theory predictions and clarify the role of QCD factorization

Observation of $B_c^+ \to \chi_c \pi^+$ decay

Strategy
[JHEP 02 (2024) 173]

 \square Measure the ratio of branching fractions between $B_c^+ \to \chi_{c1,2} \pi^+$ and $B_c^+ \to J/\psi \pi^+$

$$\frac{\mathcal{B}_{\mathrm{B_c^+}\to\chi_{\mathrm{c}1,2}\pi^+}}{\mathcal{B}_{\mathrm{B_c^+}\to\mathrm{J/\psi}\pi^+}} = \frac{\mathrm{N_{\mathrm{B_c^+}\to\chi_{\mathrm{c}1,2}\pi^+}}}{\mathrm{N_{\mathrm{B_c^+}\to\mathrm{J/\psi}\pi^+}}} \times \frac{\varepsilon_{\mathrm{B_c^+}\to\mathrm{J/\psi}\pi^+}}{\varepsilon_{\mathrm{B_c^+}\to\chi_{\mathrm{c}1,2}\pi^+}}$$

 \square The $B^+ \to J/\psi K^{*+} (\to K^+ \pi^0)$ decay is used to correct the detector resolution

Results

LHCb 2023 (90% CL)

C.-H. Chang et al.

D. Ebert et al.

E. Hernández et al.

M. A. Ivanov et al.

V. V. Kiselev et al.

Z. Rui

Z.-h. Wang et al.

R. Zhu

$$\frac{\mathcal{B}_{\rm B_c^+ \to \chi_{c2}\pi^+}}{\mathcal{B}_{\rm B_c^+ \to J/\psi\pi^+}} = 0.37 \pm 0.06 \pm 0.02 \pm 0.01$$

$$\frac{\mathcal{B}_{\mathrm{B_c^+}\to\chi_{c1}\pi^+}}{\mathcal{B}_{\mathrm{B_c^+}\to\chi_{c2}\pi^+}} < 0.49 \text{ at } 90\% \,\mathrm{CL}$$

Agree with theory expectation for the suppression

* Full RunI + RunII dataset: 9 fb⁻¹