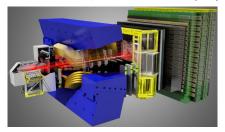
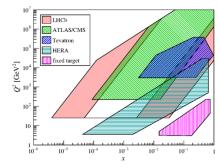
Weak Mixing Angle, W Mass, and EW Cross Sections

Nate Grieser, on behalf of the collaboration

University of Cincinnati

2024 Implications Workshop


25-10-2024



→ LHCb Strengths of Design:

- Long tracking distances for improved flavour physics
- Ring-Imaging Cherenkov (RICH) detectors for particle identification (PID)

 Forward design allows for LHC-unique coverage of lowand high-x partons

PRD 93, 074008 (2016)

Overview

 \rightarrow EW group covers an incredibly wide range of SM physics processes, leveraging the unique qualities of the LHCb experiment

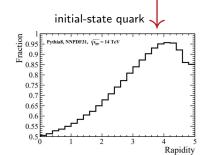
What We Can Cover Today:

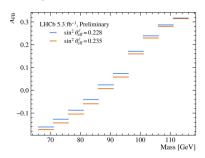
- Properties of EW theory (Weak Mixing Angle)
- Production cross sections of EW processes (Z boson XSecs)
- Properties of EW bosons (W Boson Mass)

Moving Beyond: What EW analyses are already planned, and what we need from our theory colleagues to make the best use of the unique LHCb datasets

▶ Felicia's Exotics Presentation

Measurement of the Effective Leptonic Weak Mixing Angle

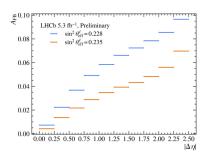

arXiv:2410.02502

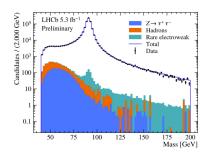

Significant probe of EW theory; relation of U(1) and SU(2) gauge couplings

$$\sin\! heta_W = \left(1 - rac{m_W^2}{m_Z^2}
ight)$$

 $q - \bar{q}$ differences at high-x and low-x has significant sculpting of Z relations to initial-state partons

Fraction of events with Z in line with

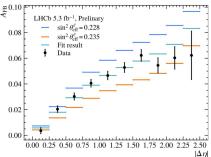

\uparrow Extract $\sin \theta_W$ using A_{FB} :


$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

Mass dependent $\sin \theta_W$ no gain, Could be used for PDF profiling Separate events at large and small $\cos \theta^*$ to increase sensitivity

$$rac{d\sigma}{dcos heta^*} \propto 1 + cos^2 heta^* + rac{8}{3}A_{FB}cos heta^*$$

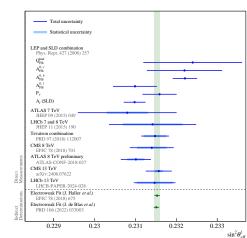
Bin the measurement of A_{FB} in $\Delta\eta$ of the muons shows significant sensitivity to $\sin\theta_W \downarrow$


↑ Can use single, large window mass bin due to very pure signal selection

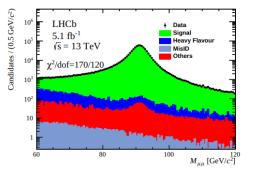
$$66 \text{GeV} < M_Z < 116 \text{GeV}$$

Measurement of the Effective Leptonic Weak Mixing Angle

arXiv:2410.02502


Results: $\sin\!\theta_{\rm eff}^{\ell} = 0.23152 \pm 0.00044 \; ({\rm stat.}) \pm 0.00005 \; ({\rm syst.}) \pm 0.00022 \; ({\rm theory})$

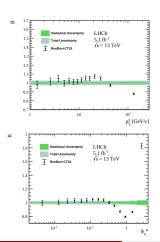
Stats are significant limitation in the most sensitive bins


No deviation from SM observed

Menglin's CERN Seminar

Motivation: Probe ends of the Bjorken-x spectrum for improved understanding of PDFs in these ranges

Compliment the W boson mass and cross section, along with weak mixing angle analyses, reducing future systematics

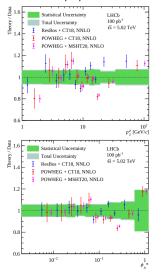

Very pure channel with basic selections:

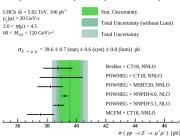
- $\mathbf{0}$ m_Z window:
 - $60 < m_{\mu^+\mu^-} < 120 \; {
 m GeV}$
- μ^{\pm} acceptance: $p_T^{\mu} > 20 \text{ GeV}$ $2.0 < \eta^{\mu} < 4.5$

Uses ϕ_{η}^* to probe similar physics as p_T^Z but with better resolution at collider detectors:

$$\phi_{\eta}^{*} \equiv an\left(rac{\left(\pi - \Delta\phi^{\ell\ell}\right)}{2}\right) \cdot \sin\left(heta_{\eta}^{*}\right)$$
PRL 106, 122001 (2011)

Results: $\sigma_{Z \to \mu^+ \mu^-} = 196.4 \pm 0.2$ (stat.) ± 1.6 (syst.) ± 3.9 (lumi.) pb \to High statistics allows for single- and double-differential measurement in y^Z, p_T^Z , or ϕ_n^*



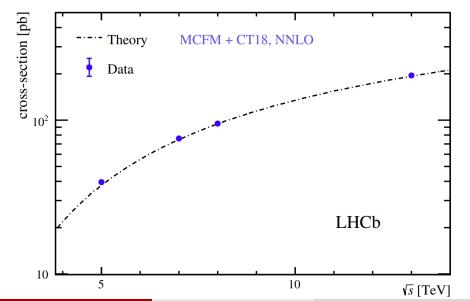

- ↑ Integrated cross-section results show agreement with theoretical predictions and the previous LHCb measurement
- \leftarrow Sizable disagreements from theory are observed in high p_{T}^{Z} and ϕ_{η}^{*} regions, which need further investigation ResBos Generator

5.02 TeV Forward Z Boson σ Measurement

JHEP 02 (2024) 070

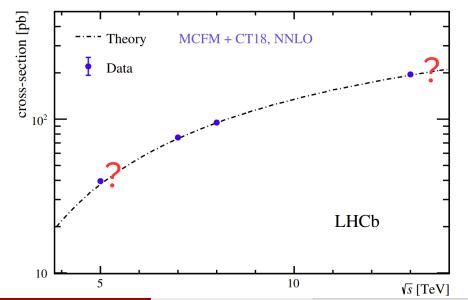
Results: $\sigma_{Z \to \mu^+ \mu^-} = 39.6 \pm 0.7 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \pm 0.8 \text{ (lumi.)} \text{ pb}$

 \uparrow Integrated cross-section results show agreement with theoretical predictions \leftarrow Agreements from theory for multiple generators are observed in $p_T^Z,\;\phi_\eta^*,\;{\rm and}\;y^Z$ differential calcuations \rightarrow Strongly statistically limited


Nuclear modification factors are calculated with respect to the pPb measurement:

$$R_{pPb}^{F} = 1.2_{-0.3}^{+0.5} \text{ (stat.)} \pm 0.1 \text{ (syst.)}$$
 $R_{pPb}^{B} = 3.6_{-0.9}^{+1.6} \text{ (stat.)} \pm 0.2 \text{ (syst.)}$

JHEP 09 (2014) 030


Z Cross Sections – To the Future

JHEP 02 (2024) 070

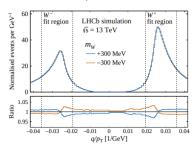
Z Cross Sections – To the Future

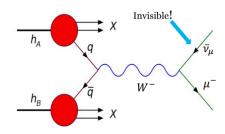
JHEP 02 (2024) 070

Measurement of the W Boson Mass

JHEP 01 (2022) 036

Mass of the \ensuremath{W} boson is one of three free parameters of electroweak theory:

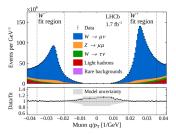

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} \left(1 + \Delta r\right)$$


Measured values deviating from prediction can give evidence of new physics in the higher order corrections (Δr)

 \rightarrow A lot of recent activity on this front with numerous collaborations producing interesting measurements

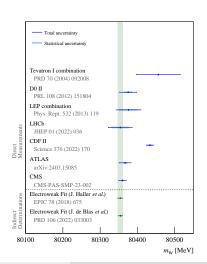
Analysis Strategy: Select well-isolated muons, performing significant momentum calibrations to ensure precision

The analysis uses q/p_T^{μ} to allow for visualization of all muons with $p_T > 24 \text{ GeV} \downarrow$



Calibrations of p_T^μ are carried out using $\Upsilon(1S) \to \mu\mu$ and $J/\Psi \to \mu\mu$ channels, validated with $Z \to \mu\mu$ distributions

Measurement of the W Boson Mass

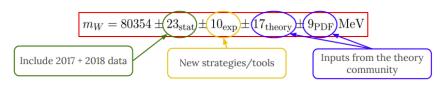

JHEP 01 (2022) 036

Results: $m_W=80354\pm23$ (stat.) \pm 10 (exp.) \pm 17 (theory) \pm 9 (PDF) MeV

 \rightarrow Current analysis based only on 1/3 of LHCb Run-2 dataset (2016)

PDF uncertainties are anti-correlated between central and forward measurements → Significant contribution to global fits!

- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- 3 Full detector simulation for misidentified hadron background
- $\textbf{ § State-of-the-art modelling of boson production (PowPy} \rightarrow \text{DYTurbo up to N2LL})$
- New PDF sets (NNPDF4.0) → Have feedback?


- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- Full detector simulation for misidentified hadron background
- $\textbf{ § State-of-the-art modelling of boson production (PowPy} \rightarrow \text{DYTurbo up to N2LL})$
- New PDF sets (NNPDF4.0) → Have feedback?

- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- 3 Full detector simulation for misidentified hadron background
- $\textbf{ § State-of-the-art modelling of boson production (PowPy} \rightarrow \mathsf{DYTurbo} \ \mathsf{up to} \ \mathsf{N2LL})$
- **⑤** New PDF sets (NNPDF4.0) → Have feedback?

- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- 3 Full detector simulation for misidentified hadron background
- $\textbf{ § State-of-the-art modelling of boson production (PowPy} \rightarrow \text{DYTurbo up to N2LL})$
- New PDF sets (NNPDF4.0) → Have feedback?

- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- 3 Full detector simulation for misidentified hadron background
- lacktriangle State-of-the-art modelling of boson production (PowPy ightarrow DYTurbo up to N2LL)
- New PDF sets (NNPDF4.0) → Have feedback?

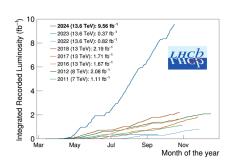
- 1 Cross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- 3 Full detector simulation for misidentified hadron background
- $\textbf{ § State-of-the-art modelling of boson production (PowPy} \rightarrow \text{DYTurbo up to N2LL})$
- New PDF sets (NNPDF4.0) → Have feedback?

- Oross checks between years, polarities, etc.; Selection validation and improvements
- More robust application of pseudo-mass method for curvature bias corrections JINST 19 (2024) P03010
- Full detector simulation for misidentified hadron background
- lacktriangle State-of-the-art modelling of boson production (PowPy ightarrow DYTurbo up to N2LL)
- **⑤** New PDF sets (NNPDF4.0) → Have feedback?

Goal: 20 MeV Sensitivity

Continuing to Leverage Run 2 Dataset

New, unique measurements are still to come from Run 2


- Cross Section Measurements:
 - W XSec, 5 TeV W XSec, Leptonic WW XSec, DPS measurements, ...
- Properties of EW bosons:
 - Mass of W/Z Boson, W Helicity distributions, ...
- Jet-involved measurements:
 - Hbb, W + Jets XSec, Semi-Leptonic WW XSec, ...

Getting the Most Out of Run 3 Dataset

- ightarrow LHCb Run 3 will offer a unique environment for EW physics at the LHC and is already underway
- Forward fiducial region with relatively low pile-up
- Expected luminosity above 25 fb⁻¹ \rightarrow More opportunities!
- Malleable fully software-based trigger

Caveat: EW-scale analysis activity is a small group with a huge phase-space to cover

→ Need collaboration with theorists to make sure we are covering the most impactful measurements to the community

BACKUP