Implications Workshop LHCb, CERN, Oct 25, 2024

Theory Keynote*

Gudrun Hiller, TU Dortmund * with a bias on FCNC BSM searches

Supported by great collaborators and the Federal Ministry for Education and Research (BMBF)

Contents

- 1. Implications appraisal
- 2. progress report (very selected)
 - 3. evolution
 - 4. coffee

1. Implications

Thank you (LHCb, organizers, participants) to continue triggering and exploiting synergies between TH and EXP

Previous Editions:

10-11 Nov. 2011, 16-18 April 2012, 14-16 Oct. 2013, 15-17 Oct. 2014, 3-5 Nov. 2015, 12-14 Oct. 2016, 8-10 Nov. 2017, 17-19 Oct 2018, 16-18 Oct 2019, 19-21 Oct 2020, 19-22 Oct 2021, 19-21 Oct 2022 and 25-27 Oct 2023

5 streams (Mixing & CP violation, FCNCs, FCCCs, QCD spectros. & exotics, EW and new particles)

Implications are great!

informal, informative and inspiring

Sensitivity to New Physics

charm FCNC:

SM coefficients

$$|\mathcal{C}_9^{\,\mathsf{eff}}(q^2)| \lesssim \mathcal{O}(0.1) (\lesssim \ 0.01) \ , \quad |\mathcal{C}_7^{\,\mathsf{eff}}(q^2)| \lesssim \ 0.01 (\simeq \mathcal{O}(0.001))$$

values in parentheses for high $q^2 > 1$ GeV².

vanish by GIM:
$$C_{10}^{\rm SM} = 0$$
, $C_{\nu}^{\rm SM} = 0$, $C'^{\rm SM}$, $C_{S,P,T,T5}^{\rm SM} = 0$.

operator names as in $b \to s\mu\mu$

$$O_{7} = \frac{m_{c}}{e} (\bar{u}_{L}\sigma_{\mu\nu}c_{R})F^{\mu\nu}, O_{9} = (\bar{u}_{L}\gamma_{\mu}c_{L})(\bar{\ell}\gamma^{\mu}\ell),$$

$$O_{10} = (\bar{u}_{L}\gamma_{\mu}c_{L})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), O_{S} = (\bar{u}_{L}c_{R})(\bar{\ell}\ell),$$

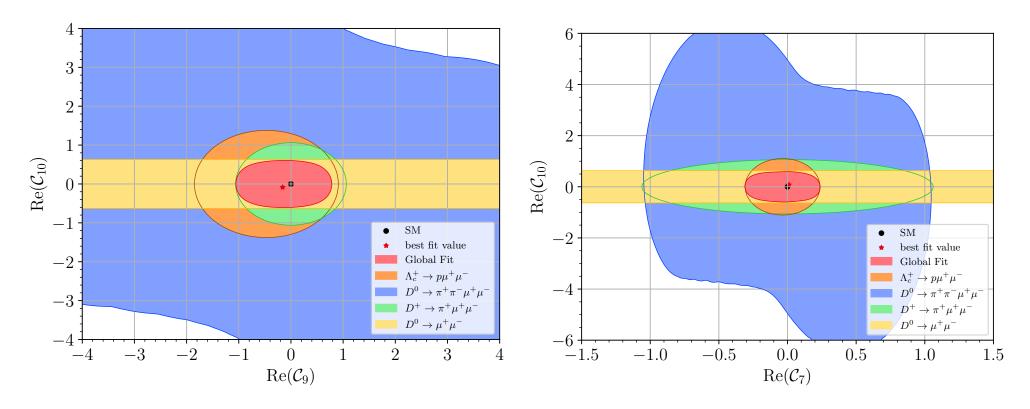
$$O_{P} = (\bar{u}_{L}c_{R})(\bar{\ell}\gamma_{5}\ell), O_{T} = \frac{1}{2}(\bar{u}\sigma_{\mu\nu}c)(\bar{\ell}\sigma^{\mu\nu}\ell),$$

$$O_{T5} = \frac{1}{2}(\bar{u}\sigma_{\mu\nu}c)(\bar{\ell}\sigma^{\mu\nu}\gamma_{5}\ell).$$

2. progress

2018:
$$c \to u\mu\mu$$
: $|C_{9,10}^{(\prime)}| \lesssim 1$, $|C_{T,T5}| \lesssim 1$, $|C_{S,P}^{(\prime)}| \lesssim 0.1$, $|C_7^{(\prime)}| \lesssim 0.3$.

2024:
$$B(D \to \mu\mu) < 2.2 \cdot 10^{-9}$$
 (CMS24): $|C_{10} - C'_{10}| \lesssim 0.52$ $B(D^+ \to \pi^+ \mu\mu)$ (LHCb21) : $|C_{10} + C'_{10}| \lesssim 0.85 \to |C_{10}|, |C'_{10}| \lesssim 0.7$


$$B(D \to \mu\mu): (|C_S - C_S'|^2 + C_P - C_P'|^2)^{1/2} \lesssim 0.04$$

$$B(\Lambda_c \to p\mu\mu)_{loq^2}$$
 (LHCb24) : $|C_7|, |C_7'| \lesssim 0.2$ (a bit stronger than $D \to \rho\gamma$)

... of course, combine more systematically...

First global $|\Delta c| = |\Delta u| = 1$ fit

Global analysis, using $D \to \mu\mu$, $D \to \pi\mu\mu$, $\Lambda_c \to p\mu\mu$, and $D \to \pi\pi\mu\mu$

2410.00115

 $A_{FB}(\Lambda_c \to p\mu\mu)$, and $S_{5,6,7}, A_{5,6,7}$ of $D \to \pi\pi\mu\mu$ clean null tests due to GIM-protection ($\propto C_{10}$).

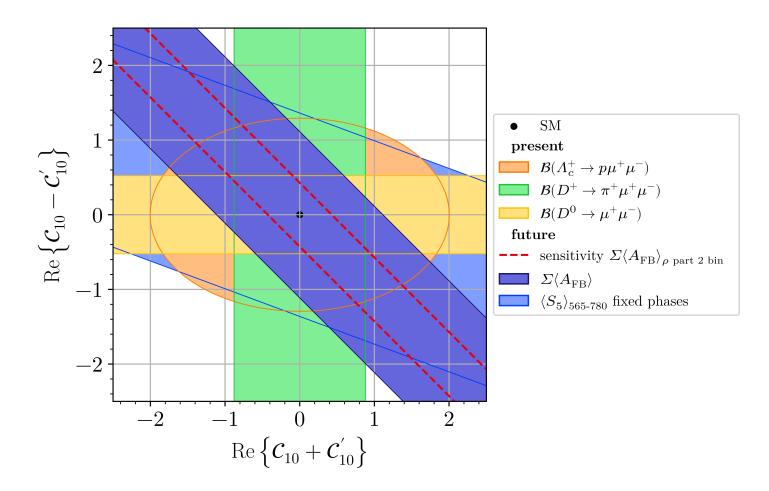
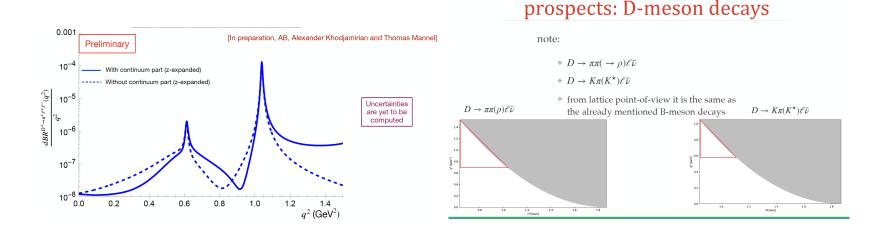


Figure 1: Complementarity of constraints in Re $\{C_{10} \pm C_{10}'\}$ from current branching ratio data on $D \to \mu^+\mu^-$ (yellow), $D^+ \to \pi^+\mu^+\mu^-$ (green) and $\Lambda_c \to p\mu^+\mu^-$ (orange), together with hypothetical future measurements of $\Sigma \langle A_{\rm FB} \rangle$ at 7% level (dark blue) and $\langle S_5 \rangle$ at 0.7% (light blue), see 2410.00115

TH predictions and PH interpretation


Null test observables can cleanly signal new physics – but how to extract new physics coefficients once there is a signal? Answer A: this is a fantastic dream-type scenario and luxury problem. Answer B: Same hadronic background hits as for other observables.

Progress in SM description from lattice, sum rules, modelling and data-driven methods by tuning params to NP-insensitive observables (resonance-dominated BRs, Cabibbo-favored decays, plus SU(3), U-spin symmetrie). This requires effort and TH+EXP synergies.

This is very relevant for charm; we learned techniques from beauty, and here improvement in the BSM-reach is thanks to two decades of dedicated effort much harder to achieve in 2024+.

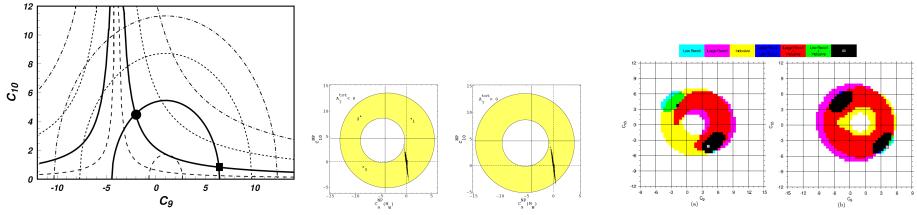
TH predictions and PH interpretation

Charming progress at this meeting by Anshika Bansal (Weak annihilation in $D \to \pi \ell \ell$), lattice (Felix Erben, Luca Leskovec $D \to \pi \pi$)

Charming proportunity for matter effects in D-mixing presented by Alexej Petrov.

First LFU tests in $c \rightarrow u$

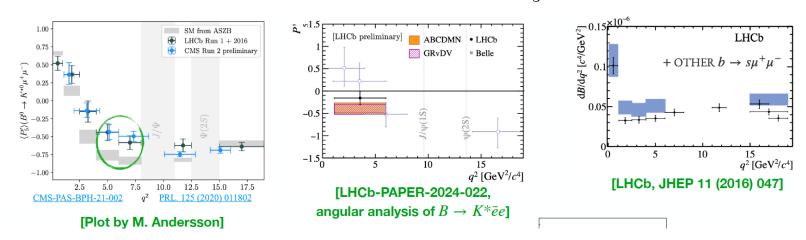
branching ratio	$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	$D^0 \to K^+ K^- \mu^+ \mu^-$	$D^0 \to \pi^+\pi^-e^+e^-$	$D^0 \to K^+ K^- e^+ e^-$
LHCb 17 NEW24	$9.64 \pm 1.20) \times 10^{-7}$	$(1.54 \pm 0.33) \times 10^{-7}$	$(13.3 \pm 3.0) \times 10^{-7}$	n.a.
BESIII 18	_	_	$<0.7\times10^{-5}$	$< 1.1 \times 10^{-5}$
resonant	$\sim 1 \times 10^{-6}$	$\sim 1 \times 10^{-7}$	$\sim 10^{-6}$	$\sim 10^{-7}$
non-resonant	$10^{-10} - 10^{-9}$	$\mathcal{O}(10^{-10})$	$10^{-10} - 10^{-9}$	$\mathcal{O}(10^{-10})$


$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2(D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2(D \to P_1P_2e^+e^-)} \text{ with same cuts } q_{\min}^2 \geq 4m_{\mu}^2$$

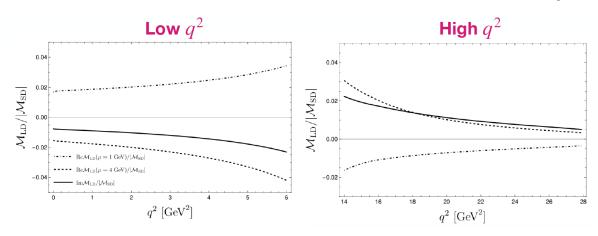
$_{-}$ full q^2	SM	BSM	LQ	naive-exp24	hi q^2 SM	LQs	$\log q^2$ SM	BSM
$R_{\pi\pi}^{D}$	$1.00 \pm \mathcal{O}(\%)$	0.850.99	SM-like	$\sim 0.72 \pm 0.19$	$1.00 \pm \mathcal{O}(\%)$	0.74.4		
R_{KK}^{D}	$1.00 \pm \mathcal{O}(\%)$	SM-like	SM-like	na	NA	NA	$0.83 \pm \mathcal{O}(\%)$	0.600.87

O(1)BSM effects in $R_{\pi\pi}^D$ above Φ ; small BSM effects in R_{KK}^D below η .

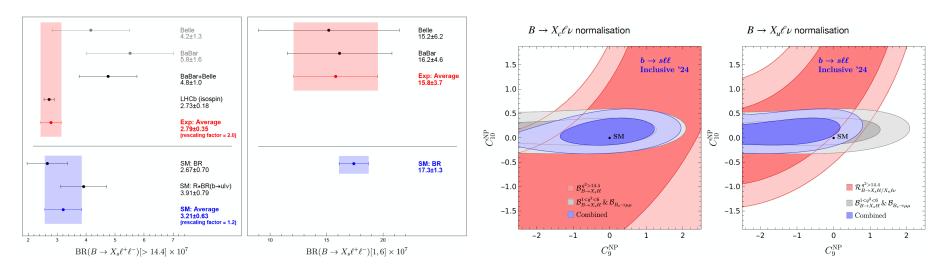
New LHCb result for $D \to h^+h^-e^+e^-$ reported by A. Scarabotto Complements LFU tests in other sectors


doing global fits in WET since 94 (Ali, Giudice, Mannel), Greub, Lunghi, GH, van Dyk, Bobeth

igure 1: Contour plots of $\mathcal{B}(\Delta s)$ and $\mathcal{A}(\Delta s)$ in the C_9 - C_{10} plane for the low-invarianthas region $4m_{\ell}^2 < s < m_{J/\psi}^2$ and $C_7 = 0.3$. The circles correspond to fixed values of \mathcal{B} :

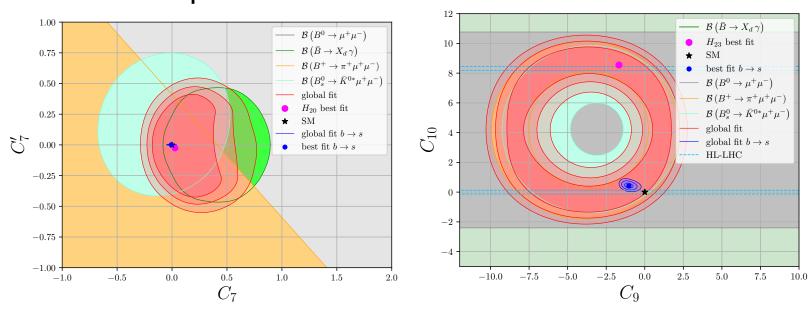

10: NNLO Case. Superposition of all the constraints. The plots correspond to the Fig. 7: The individual 68% CL constraints on C₉ and C₁₀ from B → K*t+t⁻ at large and low recoil and

then EOS, flavio came and the first angular mesurements with P_5' by LHCb at EPS13 started a wave


Thanks to LHCb's high precision what used to be an optimized observable in $B \to K^*(\to K\pi)\ell\ell$ is not clean enough anymore. The global fit cannot cleanly reveal NP due to non-perturbative SM-backgrounds.

TH efforts to understand non-local contributions (M.Hoferichter, A.Tinari) and the revival of inclusive $B \to X_s \ell \ell$ decays

conservatively 10 % shift in C_9 , somewhat flat


and the return of inclusive $B \to X_s \ell \ell$ decays J. Jenkins

different systematics than exclusives; depends on normalization, high and low q^2 (Krueger-Sehgal, $1/m_c$ Buchalla,Isidori), great for e^+e^- -machines, LHCb?

$b \to d$ much less explored than $b \to s$

2209.04457

lots of room for NP with or without MFV; angular info on $b \to d\mu\mu$ missing to break main ambiguity

$$A_{FB} \propto C_9 C_{10} + ... \text{ in } B_s \to K^* \ell \ell, \text{ or } B \to \rho \ell \ell, \text{ or } \Xi_b \to \Sigma \ell^+ \ell^-, \Omega_b^- \to \Xi^- \ell^+ \ell^-$$

Recent SU(3)-flavor fits in hadronic 2-body B-decays reveal that with current data the fit doesnt work. B. Bhattacharya

```
Combined B 	o PP data: the anomaly

• BB with others in arxiv:2311.18011: fit the entire set of B 	o PP data

• 30 observables, 26 parameters: fit gives |T_s/T_d| = 12 \pm 4

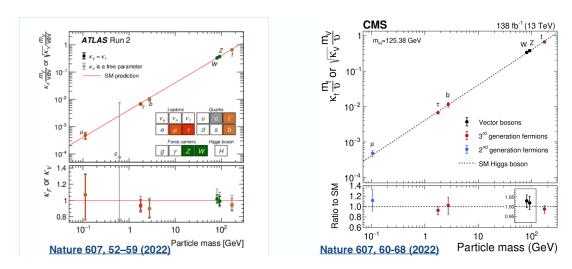
• SU(3) hypothesis: 30 observables, 13 parameters: fit gives \chi^2_{\min}/\text{dof} \sim 44/17 (3.6\sigma)

• Fit with QCDf-inspired constraint |C/T| = 0.2

• \Delta S = 1 fit: \chi^2_{\min}/\text{dof} \sim 7/3, p \sim 0.1

• \Delta S = 0 fit: \chi^2_{\min}/\text{dof} \sim 19/3, p \sim 3 \times 10^{-4} or 3.6\sigma away from SM SU(3)_F

• Combined fit: \chi^2_{\min}/\text{dof} \sim 56/18, p \sim 10^{-5} or 4.4\sigma away from SM SU(3)_F


• Both fits find deviations in B^0_s \to K^+K^- observables

• Deviations also in B^+ \to \pi^0K^+, B^0 \to \pi^-K^+, \pi^0K^0, K^0\overline{K}^0
```

This adds to an existing list of unsatisfactory fits in hadronic 2-body decays. Needs further scrutiny (flavor-breaking, more modes included and measured, cross correlations)

Closing comments

- TH and joint TH+EXP efforts attack hadronic walls to further precision and sharpen interpretation in $b \to s$
- further tests of SM and look for BSM in $c \to u, b \to d, s \to d$, light sectors
- improving precision in SM input (CKM, FFs..) improves NP reach
- the flavor puzzle is still out there!

origin of mass largely open for 1st generation u, d, e and strange