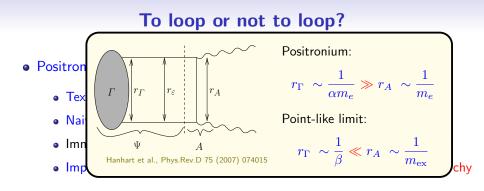
X(3872) radiative decays: View from molecular side

F.-K. Guo, C. Hanhart, A. Nefediev

What would we like to learn about X(3872)?


- Which measured properties of the X(3872) are sensitive to the short-range core and which "feel" the long-range tail?
- What is the ratio between $D\overline{D}^*$ and compact parts of the X(3872) w.f. compatible with data?
- What can we conclude from the measured ratio

$$R = \frac{\mathsf{Br}(X(3872) \to \gamma \psi')}{\mathsf{Br}(X(3872) \to \gamma J/\psi)} \sim 1 ?$$

ſ	BaBaR'09	Belle'11	LHCb'14	BESIII'20	LHCb'24
	3.4 ± 1.4	< 2.1	2.46 ± 0.7	< 0.59	1.67 ± 0.25

To loop or not to loop?

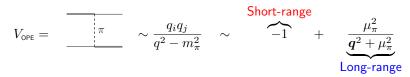
- Positronium a false hadronic physicist's friend
 - Textbook knowledge $\implies \mathcal{M}(e^+e^-({}^1S_0) \to \gamma\gamma) \propto \psi(0)$
 - Naive conclusion \implies Hadronic molecules decay "via" $\psi(0)$
 - Immediate problem \implies Model estimates for $\psi(0)$ differ drastically
 - Important note \implies " $\psi(0)$ " formula implies particular scales hierarchy

To loop or not to loop? Positronium: Positron $r_{\Gamma} ~\sim rac{1}{lpha m_e} \gg r_A ~\sim rac{1}{m_e}$ r_{Γ} r_{ε} r_A Tex Point-like limit: Nair $r_{\Gamma} \sim \frac{1}{\beta} \ll r_A \sim \frac{1}{m_{\rm ex}}$ Imn Ψ Hanhart et al., Phys.Rev.D 75 (2007) 074015 Imp chv Conclusion Employ w.f. in hadronic physics with a lot of caution!

• Positron • Tex • Nai • Imp • Imp • Imp • To loop or not to loop? Positronium: $r_{\Gamma} \sim \frac{1}{\alpha m_e} \gg r_A \sim \frac{1}{m_e}$ Point-like limit: $r_{\Gamma} \sim \frac{1}{\beta} \ll r_A \sim \frac{1}{m_{ex}}$ Point-like limit: $r_{\Gamma} \sim \frac{1}{\beta} \ll r_A \sim \frac{1}{m_{ex}}$

- Conclusion \implies Employ w.f. in hadronic physics with a lot of caution!
- Loop amplitude a true hadronic physicist's friend
 - $\bullet \ \mathsf{QFT} \ \mathsf{loop} \ \mathsf{integral} \ \implies \ \mathsf{Most} \ \mathsf{general} \ \mathsf{treatment}$

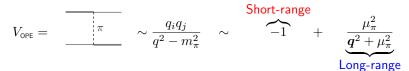
 - Conclusion \implies Use of loop amplitudes is safe and preferred

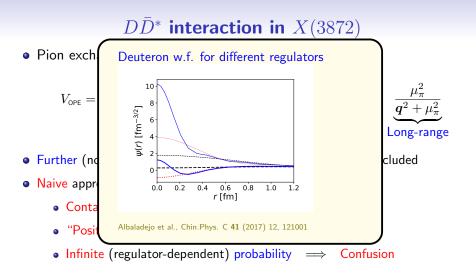

$D\bar{D}^*$ interaction in X(3872)

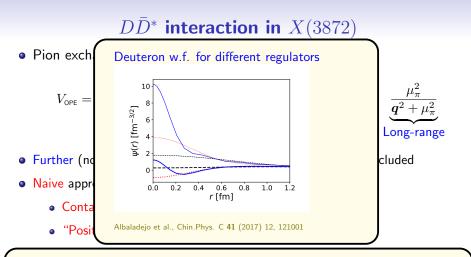
• Pion exchange

$$V_{\text{OPE}}=$$
 π $\sim rac{q_i q_j}{q^2-m_\pi^2}$

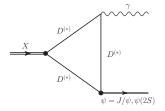
$D\bar{D}^*$ interaction in X(3872)


• Pion exchange


• Further (not quantified) short-range interactions need to be included

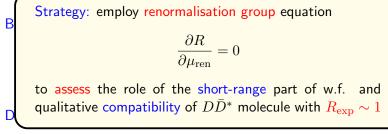

$D\bar{D}^*$ interaction in X(3872)

Pion exchange

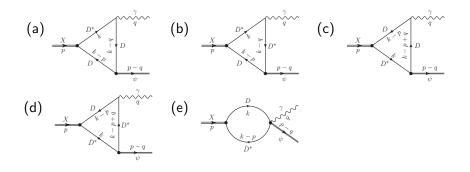

- Further (not quantified) short-range interactions need to be included
- Naive approach to processes sensitive to short-range physics
 - Contact theory $\implies \psi(r) \sim \frac{1}{r} e^{-\gamma r}$ with $\gamma \sim \sqrt{E_B}$
 - "Positronium"-like prescription $\implies \mathcal{M} \propto \psi(0)$
 - Infinite (regulator-dependent) probability \implies Confusion

• If short-ranged dynamics is important, using only long-range tail of w.f. as the full w.f. is incorrect

• Loop amplitudes incorporate short- and long-range dynamics properly $(\Gamma[S \rightarrow \gamma \gamma] \sim \alpha^2 \sqrt{mE_B} + O(mE_B/\beta^2))$



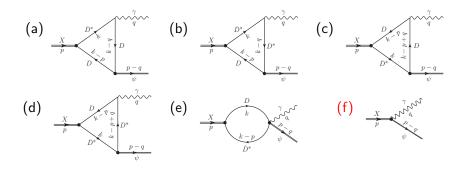
F.-K.Guo et al., Phys.Lett. B 742 (2015) 394


- No $q\bar{q} \rightarrow \gamma$ vertex the photon emerges from (well-known) electric and magnetic $D^{(*)} \rightarrow D^{(*)}\gamma$ vertices
- Known (numerically uncertain) $X(3872) \rightarrow D\bar{D}^*$ coupling (Landau, Weinberg works dated 1960's) cancels in the ratio R
- Unknown $J/\psi, \psi(2S) \to D^{(*)}D^{(*)}$ couplings but
 - Natural to expect $g_2'(\psi(2S)\to D^{(*)}D^{(*)})\gtrsim g_2(J/\psi\to D^{(*)}D^{(*)})$
 - These couplings largely cancel in the ratio R

- Good news:
 - A straightforward calculation of loop amplitudes is possible
 - For a fixed regularisation, the ratio R depends on a single unknown ratio of couplings g_2^\prime/g_2
- Bad news:
 - No straightforward way to estimate unknown couplings $g_2^\prime \ \& \ g_2$
 - Contribution from the short-range component may be sizeable
 ⇒ Potentially strong scheme dependence
- Dilemma:
 - Loops diverge \implies Need input to fix the subtracted amplitude
 - Use R to fix the theory \implies No further data to compare with
 - Employ not renormalised theory ⇒ No reliable quantitative conclusion are possible

- Good news:
 - A straightforward calculation of loop amplitudes is possible
 - For a fixed regularisation, the ratio R depends on a single unknown ratio

- Use R to fix the theory \implies No further data to compare with
- Employ not renormalised theory ⇒ No reliable quantitative conclusion are possible

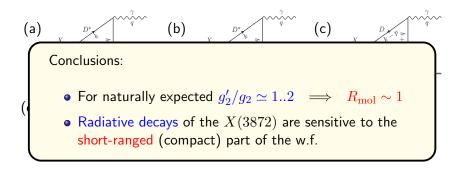


	$\mu_{\rm ren} = m_X/2$	$\mu_{\rm ren} = m_X$	$\mu_{\rm ren} = 2m_X$
R	$0.39(g_2'/g_2)^2$	$0.21(g_2'/g_2)^2$	$0.14(g_2'/g_2)^2$

Update: P.-P. Shi et al., Phys.Lett. B 843 (2023) 137987

Similar analysis: D.A.S. Molnar et al., 1601.03366

・ロト ・ (日)・ ・ 主 ・ (主)・ 主 ・ つへで 6/1



	$\mu_{\rm ren} = m_X/2$	$\mu_{\rm ren} = m_X$	$\mu_{\rm ren} = 2m_X$
R	$0.39(g_2'/g_2)^2$	$0.21(g_2'/g_2)^2$	$0.14(g_2'/g_2)^2$

Update: P.-P. Shi et al., Phys.Lett. B 843 (2023) 137987

Similar analysis: D.A.S. Molnar et al., 1601.03366

<ロ> < 回> < 回> < 目> < 目> < 目> < 目 > ののの 7/1

	$\mu_{\rm ren} = m_X/2$,	$\mu_{\rm ren} = 2m_X$
R	$0.39(g_2'/g_2)^2$	$0.21(g_2'/g_2)^2$	$0.14(g_2'/g_2)^2$

Update: P.-P. Shi et al., Phys.Lett. B 843 (2023) 137987

Similar analysis: D.A.S. Molnar et al., 1601.03366

Nature of X(3872) from radiative decays?

Very naive hand waving consideration (to emphasise problem, not solve it)

 $R_{\rm comp} \gtrsim \Delta R_{\rm comp}(\mu_{\rm ren}) \simeq \Delta R_{\rm mol}(\mu_{\rm ren}) \simeq R_{\rm mol} \sim 1$

Nature of X(3872) from radiative decays?

Very naive hand waving consideration (to emphasise problem, not solve it)

 $R_{\rm comp} \gtrsim \Delta R_{\rm comp}(\mu_{\rm ren}) \simeq \Delta R_{\rm mol}(\mu_{\rm ren}) \simeq R_{\rm mol} \sim 1$

Up to the phase space factors,

$$R \simeq \frac{\left|\sqrt{Z}\mathcal{M}_{\rm comp}(X \to \gamma\psi(2S)) + \sqrt{1-Z}\mathcal{M}_{\rm mol}(X \to \gamma\psi(2S))\right|^2}{\left|\sqrt{Z}\mathcal{M}_{\rm comp}(X \to \gamma J/\psi) + \sqrt{1-Z}\mathcal{M}_{\rm mol}(X \to \gamma J/\psi)\right|^2}$$

or, after straightforward manipulations,

$$R \simeq \left|\frac{\xi}{1+\xi}\sqrt{R_{\rm comp}} + \frac{1}{1+\xi}\sqrt{R_{\rm mol}}\right|^2$$

with

$$\xi = \sqrt{\frac{Z}{1-Z}} \frac{\mathcal{M}_{\text{comp}}(X \to \gamma J/\psi)}{\mathcal{M}_{\text{mol}}(X \to \gamma J/\psi)}$$

8/1

Nature of X(3872) from radiative decays?

Very naive hand waving consideration (to emphasise problem, not solve it)

 $R_{\rm comp} \gtrsim \Delta R_{\rm comp}(\mu_{\rm ren}) \simeq \Delta R_{\rm mol}(\mu_{\rm ren}) \simeq R_{\rm mol} \sim 1$

Up to the phase space factors,

 $\left| \sqrt{Z}\mathcal{M}_{\text{comp}}(X \to \gamma \psi(2S)) + \sqrt{1 - Z}\mathcal{M}_{\text{mol}}(X \to \gamma \psi(2S)) \right|^2$ • No estimate of Z is possible without model calculations • For $R_{\text{comp}} \simeq R_{\text{mol}} \simeq 1 \implies R \simeq 1$ $R \simeq \left| \frac{\xi}{1 + \varepsilon} \sqrt{R_{\text{comp}}} + \frac{1}{1 + \varepsilon} \sqrt{R_{\text{mol}}} \right|^2$

with

$$\xi = \sqrt{\frac{Z}{1-Z}} \frac{\mathcal{M}_{\text{comp}}(X \to \gamma J/\psi)}{\mathcal{M}_{\text{mol}}(X \to \gamma J/\psi)}$$

Conclusions

- Experimental situation with the X(3872) radiative decays gets clearer
- The ratio R is measured to be of the order of unity
- Calculations based on w.f. overlaps need to be treated with caution
- Conclusions from calculation of *D*-meson loop amplitudes:
 - ${\it R}_{\rm mol} \simeq 1$ for natural couplings of J/ψ and $\psi(2S)$ to $D{\rm -mesons}$
 - Further efforts are needed to evaluate the ratio of couplings g_2^\prime/g_2 theoretically and/or phenomenologically
 - Radiative decays of X are sensitive to short-range component of w.f. that are out of control in hadronic theory
- Under these circumstances, the measured ratio $R_{\rm exp} \simeq 1$ is not decisive in discriminating between contributions to the X(3872) w.f.