

Focus on Production Qualification & Optical Transceiver COTS

Rudy Ferraro (BE-CEM-EPR)
Salvatore Danzeca (BE-CEM-EPR)
Manoel Barros Marin (SY-BI-BP)

RadWG Workshop – 20th June, 2024

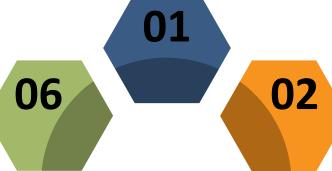
Radiation Test Service

- ➤ BE-CEM-EPR provides, the service of radiation testing of electronic components supporting the Radiation Working Group (RadWG)
- ➤ The RadWG **supports** the accelerator sector equipment groups for the assessment of radiation tolerance of electronic equipment to be installed in radiation exposed areas.
- ➤ It is as a **forum** for electronic engineers to discuss
 - design practices
 - radiation tests
 - radiation induced failures in the accelerators.
- The RadWG is one of the pillars of the CERN Radiation Hardness Assurance process

Radiation Test Service – BE-CEM-EPR

Database and Publication

The results are collected, stored and in EDMS and published in the RADWG database to allow an easy research of the best candidates for the new radiation tolerant des



Result analysis

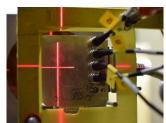
The results are analyzed during and after the tests for each component considering the end application and the possible operational issues

Request collection

The requests for radiation testing are collected and processed selecting the most suitable methodology and facilities

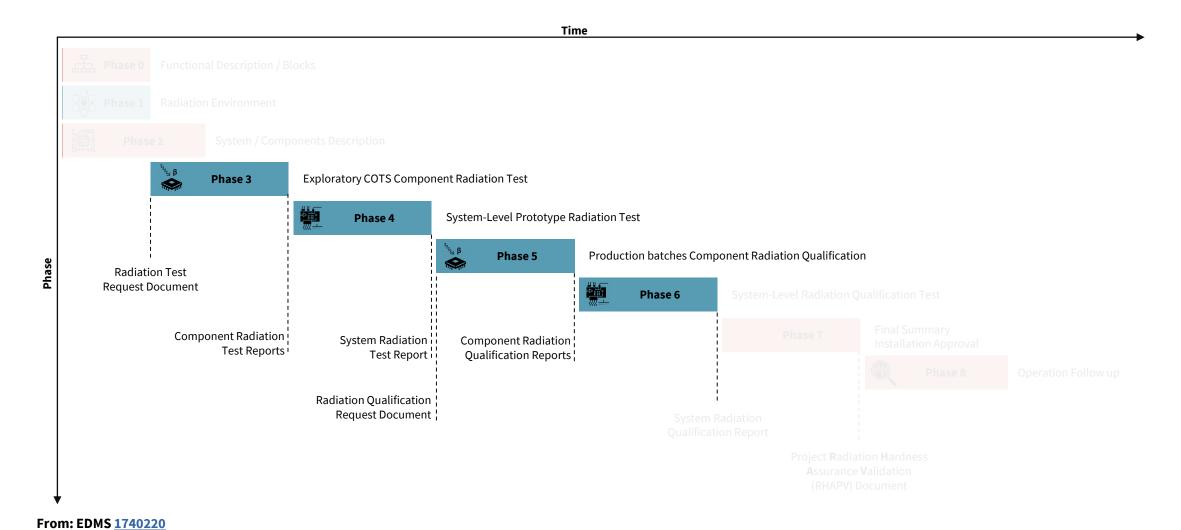
04


Test planning and structure Each component/system is analyzed, and all the possible


radiation effects are taken into account for planning the test and structure it

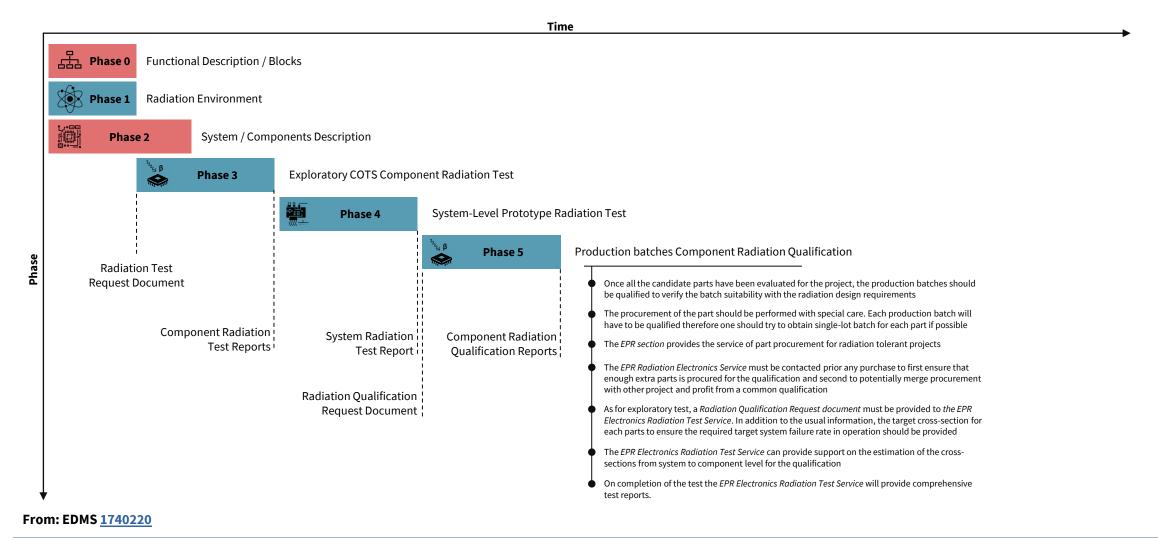
Board and instrumentation preparation

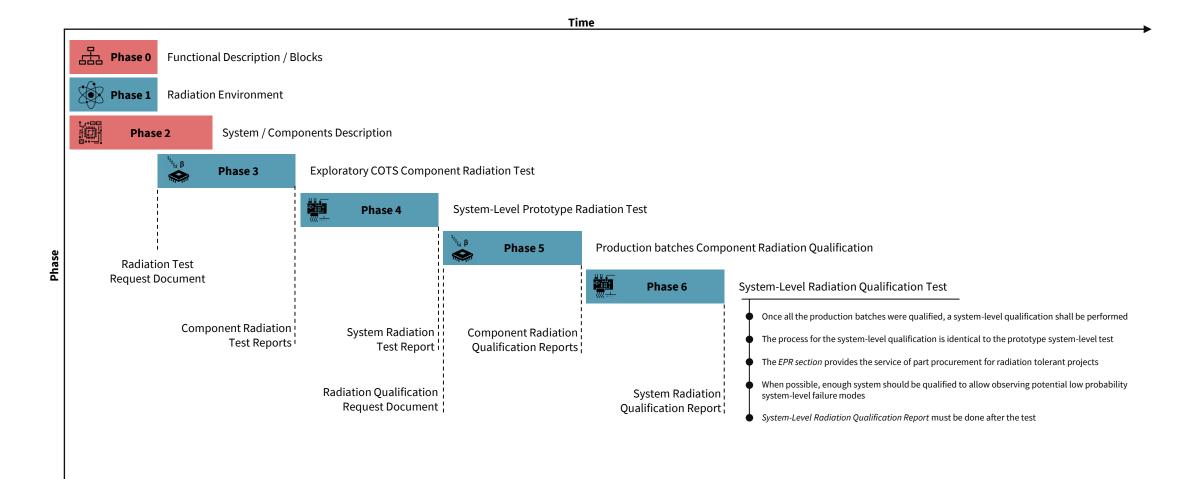
For each component a dedicated set of test board is prepared and the associated instrumentation is chosen to face the complexity of the radiation test



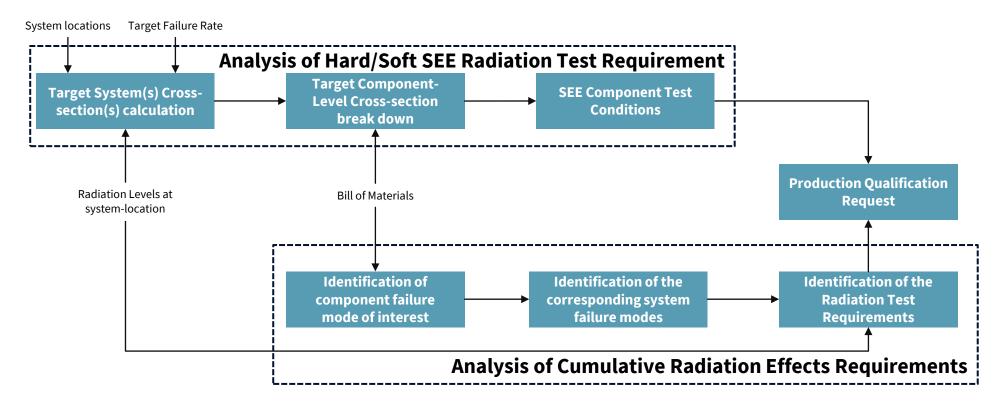
The test are carried out at CERN facilities such as CHARM or Co60 and in external facilities. The transport, personnel and instrumentation are selected considering the peculiar aspect of each

Testing


CERN ATS-RHA Procedure: New developments


CERN ATS-RHA Procedure: New developments

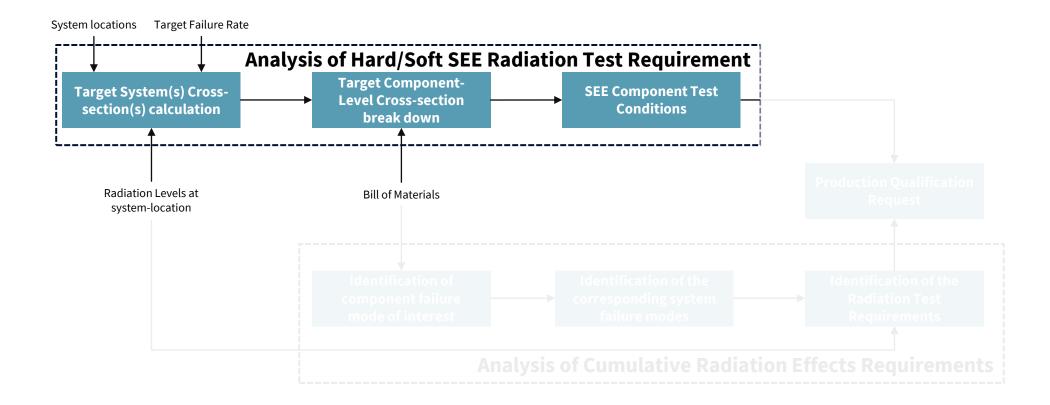
CERN ATS-RHA Procedure: New developments



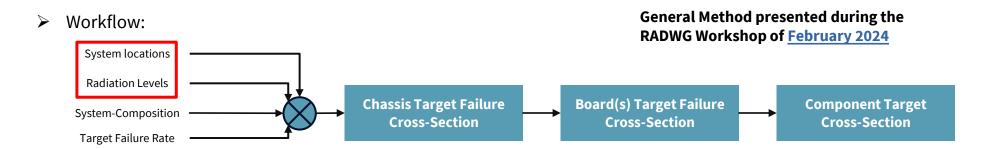
From: EDMS 1740220

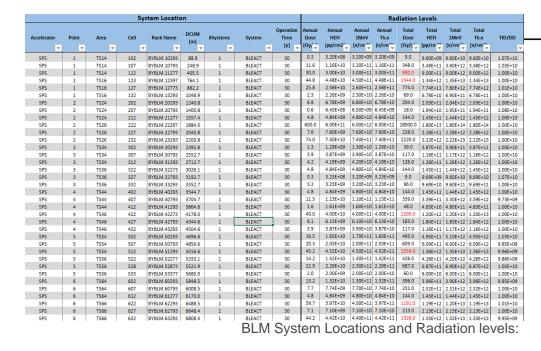
Production Radiation Test Requirement definition Process

Several information to be provided to perform the qualification of production lots:


> The EPR Electronics Radiation Test Service can support the preparation of the request

Production Qualification Request Process


Several information to be provided to perform the qualification of production lots:



20/06/2024

Total Annual Fluence all systems are exposed: 3.40E+13 HeH/cm²

The maximum desired SEE failure rate in operation defines the target upper-limit cross-section for the tests:

System Failure Rate [%]	Number of Failures Per year For 36 systems	Maximum System Cross-section [cm ²]
10%	3.6	3.18 E-12
1%	0.36	3.18 E-13
0.1%	0.036	3.18 E-14
0.01%	0.0036	3.18 E-15

x% * Number of systems

Here is 36 for example, but it can scale up very fast depending on LHC projects

Total Annual Fluence all systems are exposed: 3.40E+13 HeH/cm²

The maximum desired SEE failure rate in operation defines the target upper-limit cross-section for the tests:

System Failure Rate [%]	Number of Failures Per year	Maximum System Cross-section [cm²]	Maximum Component Cross-section [cm ²]	For 10 components:	For 100 components:	:	
10%		3.18 E-12	3.18 E-12 / Number of components*	3.18 E-13	3.18 E-15		
1%	1% * Number of systems	3.18 E-13	3.18 E-13 / Number of component*s	3.18 E-14	3.18 E-16		
0.1%	•	3.18 E-14	3.18 E-14 / Number of components*	3.18 E-15	3.18 E-17		Hardly Achievable
0.01%		3.18 E-15	3.18 E-15 / Number of components*	3.18 E-16	3.18 E-18	→	by Testing
							
			LHC Projects can have from less than 10 active parts to 100				

^{*} Rule of thumb, in practice it is less since we are dealing with upper bounds combinations

Total Annual Fluence all systems are exposed: 3.40E+13 HeH/cm²

The maximum desired SEE failure rate in operation defines the target upper-limit cross-section for the tests:

System Failure Rate [%]	e Number of Failures Per year	Maximum System Cross-section [cm²]	Maximum Component Cross-section [cm²]		Test Fluence [HeH/cm²]	Number of Tes Requir	-	
			For 10 components:	For 100 components:		For 10 components:	For 100 components:	: :
10%		3.18 E-12	3.18 E-13*	3.18 E-15*		~4	~400	
1%	1% * Number of systems	3.18 E-13	3.18 E-14*	3.18 E-16*	3.5 E12	~40	~4k	
0.1%	,	3.18 E-14	3.18 E-15*	3.18 E-17*	1 Week in CHARM R13	400	40k	
0.01%		3.18 E-15	3.18 E-16*	3.18 E-18*		4k	400k	

Requirements

Radiation Qualification

Feasible

Not feasible

^{*} Rule of thumb, in practice it is less since we are dealing with upper bounds combinations

Total Annual Fluence all systems are exposed: 3.40E+13 HeH/cm²

The maximum desired SEE failure rate in operation defines the target upper-limit cross-section for the tests:

System Failure Rate [%]	e Number of Failures Per year	Maximum System Cross-section [cm²]	Maximum Component Cross-section [cm ²]		Device	Туре	Device Failure Cross-Section [cm²]
			For 10 components:	For 100 components:			
10%		3.18 E-12	3.18 E-13*	3.18 E-15*	FTLC1156RDPL	SFP28	1. 85 E-9 [1]
					DDCChh-QLCA	QSP28	< 2. 81 E-11 [1]
1%	1% * Number of systems	3.18 E-13	3.18 E-14*	3.18 E-16*	D1TThh-QLCA	QSP28	< 6. 92 E-11 [1]
0.10/	170 Hamber of Systems				D13399-SLHA	SPF+	4. 70 E-12 [1]
0.1%		3.18 E-14	3.18 E-15*	3.18 E-17*	FTLF1436P4BCV	SFP28	< 4. 32 E-12 [1]
0.010/		2 10 5 15	2.10 = 1.0*	2.10 5.10*	ET5402	SFP+	< 8. 54 E-12 [1]
0.01%		3.18 E-15	3.18 E-16*	3.18 E-18*	GBTx + VTRx	CERN EP	ASIC ~ 8. 70 E-12 [2]

Requirements

+ 9 devices from BE/BI/QP in [3] but failure cross-section

Reports:

So far no systems use optical transceiver COTS in production

not provided.

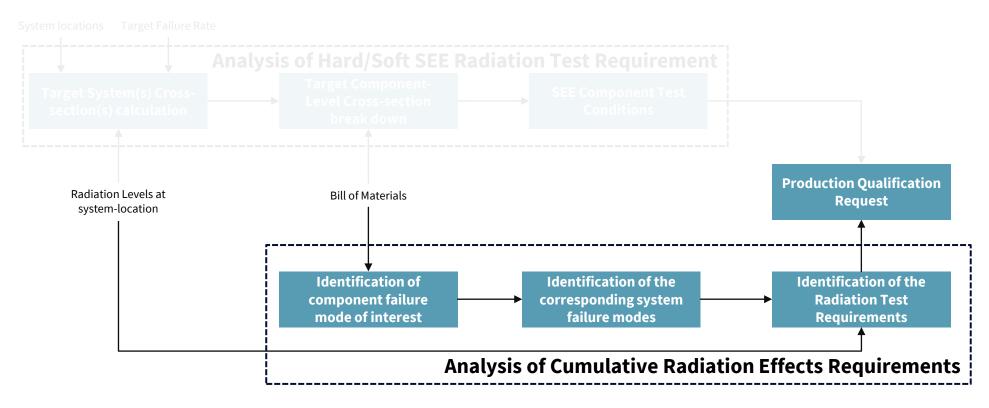
^{*} Rule of thumb, in practice it is less since we are dealing with upper bounds combinations [3] EDMS 1289608 By BE-BI-QP

^[1] EDMS 3088003 By BE-CEM-EPR & SY-BI

^[2] EDMS 1863774 By BE-CEM-EPR & SY-BI at system-level with the GEFE Board

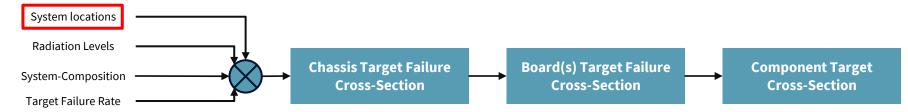
Conclusions

- To ensure reliable operation of the radiation tolerant systems in the CERN accelerator complex, the systems must undergo proper radiation test qualifications to ensure its failure rate in operation is compliant with the objective
- Within the BE-CEM-EPR radiation test service a workflow has been established to calculate the target system and component cross-sections to be achieved during qualification based on:
 - System Locations
 - Radiation Levels at Locations
 - ➤ Number of Systems & Bill of Materials
- > The final system and component cross-section is highly dependent on the radiation levels and even more on the number of systems and components
- Target cross-sections can range from 10E-10 to 10E-16 depending on the projects
- This process is crucial to verify that the system radiation tolerance is compliant with the project objectives
- So far, a certain number of COTS transceivers were tested with cross-sections ranging from 10E-9 to 10E-12, which could be a good fit for certain projects
- Those test were only exploratory, no further qualifications were performed since so far, no developments with them are ongoing
- Also for rad-hard devices the testing and evaluation exercise is still fundamental and should be investigated according to the number of devices purchased and on the projects that might embed them



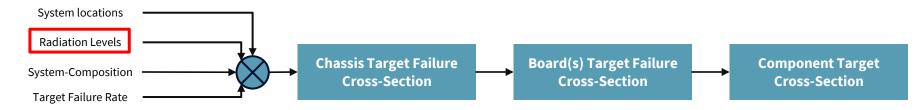
Production Radiation Test Requirement definition Process

Several information to be provided to perform the qualification of production lots:



> The EPR Electronics Radiation Test Service can support the preparation of the request

Workflow:

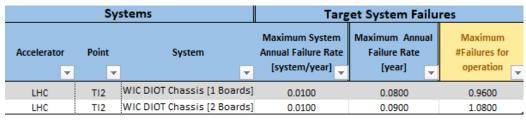


	System Location										
Accelerator			#Systems	#Systems System							
	▼	▼	T	▼	[y]						
LHC	TI2	20540	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	20940	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	21940	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	22340	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	22844	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	23244	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	23644	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	24044	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	24444	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	24844	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	25244	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	25744	1	WIC DIOT Chassis [2 Boards]	12						
LHC	TI2	26240	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	26640	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	27040	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	28040	1	WIC DIOT Chassis [1 Boards]	12						
LHC	TI2	28940	1	WIC DIOT Chassis [2 Boards]	12						

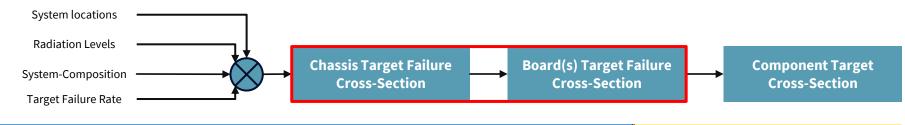
Workflow:

		Sy	ystem Locati	on		Radiation Levels								
Accelerator	Point	CIWRA	#Systems	System	Operation Time [y]	Annual Dose [Gy/y]	Annual HEH [pp/cm2 ¹	Annual 1MeV [n/cm ²¹	Annual Th.n [n/cm ²¹	Total Dose [Gy/y1	Total HEH [pp/cm ^{2]}	Total 1MeV [n/cm ²¹	Total Th.n [n/cm ²¹	TID/DD ▼
LHC	TI2	20540	1	WIC DIOT Chassis [2 Boards]	12	0.3	6.00E+08	-	-	3.6	7.20E+09	-	-	-
LHC	TI2	20940	1	WIC DIOT Chassis [2 Boards]	12	0.2	4.00E+08	-	-	2.4	4.80E+09	-	-	-
LHC	TI2	21940	1	WIC DIOT Chassis [1 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	22340	1	WIC DIOT Chassis [1 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	22844	1	WIC DIOT Chassis [1 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	23244	1	WIC DIOT Chassis [1 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	23644	1	WIC DIOT Chassis [2 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	24044	1	WIC DIOT Chassis [2 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	24444	1	WIC DIOT Chassis [2 Boards]	12	0.3	5.00E+08	-	-	3.0	6.00E+09	-	-	-
LHC	TI2	24844	1	WIC DIOT Chassis [2 Boards]	12	0.0	1.20E+07	-	-	0.1	1.44E+08	-	-	-
LHC	TI2	25244	1	WIC DIOT Chassis [2 Boards]	12	0.0	8.00E+06	-	-	0.0	9.60E+07	-	-	-
LHC	TI2	25744	1	WIC DIOT Chassis [2 Boards]	12	0.0	4.00E+06	-	-	0.0	4.80E+07	-	-	-
LHC	TI2	26240	1	WIC DIOT Chassis [1 Boards]	12	0.0	1.60E+06	-	-	0.0	1.92E+07	-	-	-
LHC	TI2	26640	1	WIC DIOT Chassis [1 Boards]	12	0.0	6.00E+05	-	-	0.0	7.20E+06	-	-	-
LHC	TI2	27040	1	WIC DIOT Chassis [1 Boards]	12	0.0	4.00E+05	-	-	0.0	4.80E+06	-	-	-
LHC	TI2	28040	1	WIC DIOT Chassis [1 Boards]	12	0.0	2.00E+06	-	-	0.0	2.40E+07	-	-	-
LHC	TI2	28940	1	WIC DIOT Chassis [2 Boards]	12	0.0	4.00E+07	-	-	0.2	4.80E+08	-	-	-

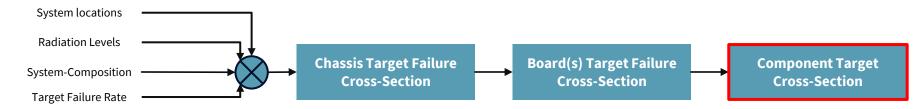
> The EPR Electronics Radiation Test Service can support the different activities required to prepare the production qualification request:


System Configuration	#EDA	Board	#Active Parts	Quantity	Redundancy?	
▼	v	v	v	v	▼	
WIC DIOT Chassis [1 Boards]	EDA-03829-V2	DIO 16ch opt 24V	7	1	1	
WIC DIOT Chassis [1 Boards]	EDA-04422-V2	RaToPUS DC/DC	18	1	1	
WIC DIOT Chassis [1 Boards]	EDA-04326-V1	DI/OT Rad-tol System Board	15	1	2	
WIC DIOT Chassis [1 Boards]	EDA-03613-V3	FMC-nanoFIP	5	1	1	
WIC DIOT Chassis [2 Boards]	EDA-03829-V2	DIO 16ch opt 24V	7	2	1	
WIC DIOT Chassis [2 Boards]	EDA-04422-V2	RaToPUS DC/DC	18	1	2	
WIC DIOT Chassis [2 Boards]	EDA-04326-V1	DI/OT Rad-tol System Board	15	1	1	
WIC DIOT Chassis [2 Boards]	EDA-03613-V3	FMC-nanoFIP	5	1	1	

The EPR Electronics Radiation Test Service can support the different activities required to prepare the production qualification request:



> The EPR Electronics Radiation Test Service can support the different activities required to prepare the production qualification request:


System Configuration	#EDA	Board ▼	#Active Parts	Qty	Redundancy?	Target System Upper Limit Cross-section [system.cm ²¹	Target Subsystem Upper Limit Cross-section [system.cm v	Target Board Upper Limit Cross-section [system.cm ²]
WIC DIOT Chassis [1 Boards]	EDA-03829-V2	DIO 16ch opt 24V	7	1	1	1.75E-11	4.38E-12	4.38E-12
WIC DIOT Chassis [1 Boards]	EDA-04422-V2	RaToPUS DC/DC	18	1	1	1.75E-11	4.38E-12	4.38E-12
WIC DIOT Chassis [1 Boards]	EDA-04326-V1	DI/OT Rad-tol System Board	15	1	2	1.75E-11	4.38E-12	6.57E-12
WIC DIOT Chassis [1 Boards]	EDA-03613-V3	FMC-nanoFIP	5	1	1	1.75E-11	4.38E-12	4.38E-12
WIC DIOT Chassis [2 Boards]	EDA-03829-V2	DIO 16ch opt 24V	7	2	1	1.97E-11	4.92E-12	2.46E-12
WIC DIOT Chassis [2 Boards]	EDA-04422-V2	RaToPUS DC/DC	18	1	2	1.97E-11	4.92E-12	7.39E-12
WIC DIOT Chassis [2 Boards]	EDA-04326-V1	DI/OT Rad-tol System Board	15	1	1	1.97E-11	4.92E-12	4.92E-12
WIC DIOT Chassis [2 Boards]	EDA-03613-V3	FMC-nanoFIP	5	1	1	1.97E-11	4.92E-12	4.92E-12

System Radiation Failure Analysis and Prediction Document EDMS 3046605 (Tab: System(s) Composition)

> The EPR Electronics Radiation Test Service can support the different activities required to prepare the production qualification request:

# EDA	Board Name	Schematic Reference ▼	Part Number ↓1	Manufacturer 🔻	Component Type ▼	Target Cross- Section Upper Limit
EDA-03829-V2	DIO 16ch opt 24V	D3, D5	PMLL4148L	NXP SEMICONDUCTORS	Diode	-
EDA-03829-V2	DIO 16ch opt 24V	D1, D2, D4	SM6T39CA	ST MICROELECTRONICS	Diode	-
EDA-03829-V2	DIO 16ch opt 24V	D7, D8	BA754	FAIRCHILD SEMICONDUCTOR	Diode	6.25E-13
EDA-03829-V2	DIO 16ch opt 24V	IC3, IC5	LT1930ES5	LINEAR TECHNOLOGY	Voltage Regulator	6.25E-13
EDA-03829-V2	DIO 16ch opt 24V	IC4	LT1763CDE	LINEAR TECHNOLOGY	Voltage Regulator	6.25E-13
EDA-03829-V2	DIO 16ch opt 24V	IC1, IC2	AQW2105	Panasonio	Optocoupler	-
EDA-03829-V2	DIO 16ch opt 24V	IC6	MCP23017-EISS	MICROCHIP TECHNOLOGY	IO Expander	6.25E-13

The EPR Electronics Radiation Test Service can support the different activities required to prepare the production qualification request:

						-	Corresponding Test Conditions					
⊕ EDA	Board Name	Schematic Reference	Part Number ↓1	Manufacturer ▼	Component Type	Target Cross- Section Upper Limit	Facility	Test Fluence ▼	Target Fluence Uncertaintu ▼	Target Confidence Interval (CI) ▼	Number of devices for test	Total effective Fluence
EDA-03829-V2	DIO 16ch opt 24V	D3, D5	PMLL4148L	NXP SEMICONDUCTORS	Diode	-					-	-
EDA-03829-V2	DIO 16ch opt 24V	D1, D2, D4	SM6T39CA	ST MICROELECTRONICS	Diode	-					-	-
EDA-03829-V2	DIO 16ch opt 24V	D7, D8	BAT54	FAIRCHILD SENICONDUCTOF	Diode	6.25E-13	PSI	8.50E+11	10%	95%	8.33	7.08E+12
EDA-03829-V2	DIO 16ch opt 24V	IC3, IC5	LT1930ES5	LINEAR TECHNOLOGY	Voltage Regulator	6.25E-13	CHARM	1.50E+12	20%	95%	5.51	8.26E+12
EDA-03829-V2	DIO 16ch opt 24V	IC4	LT1763CDE	LINEAR TECHNOLOGY	Voltage Regulator	6.25E-13	CHARM	1.50E+12	20%	95%	5.51	8.26E+12
EDA-03829-V2	DIO 16ch opt 24V	IC1, IC2	AQW2105	Panasonic	Optocoupler	-					-	-
EDA-03829-V2	DIO 16ch opt 24V	IC6	MCP23017-EISS	MICROCHIP TECHNOLOGY	IO Expander	6.25E-13	CHARM	1.50E+12	20%	95%	5.51	8.26E+12

System Radiation Failure Analysis and Prediction Document EDMS 3046605 (Tab: SubSystems Radiation Tolerance)

Final number of components for SEE testing = Required number of devices x margin

