

Magnetically Coupled Actuator (MCA) Planar magnet topologies investigation and simulation for the LHC wire-scanner

Magnetic Coupling for the LHC Linear Wire Scanners – review J. Emery 06.06.2024

Magnetically Coupled Actuator (MCA) investigation for the LHC wire scanners

- Wire scanner introduction
- Magnetic system integration
- Magnets topologies presentation and benchmarking
- Optimization of most promising topologies
- Summary and outlook

Beam wire scanner principle

Motivation for a design with MCA

- Lifetime & reliability limitation of the current design
 Bellows / vacuum forces, long arm, etc..
- Look into passive magnetic system to avoid using position sensor in vacuum
- Commercial tubular MCA coupling limitations:
 requires large space on one side of the beam line
 forks fixation fare from c-wires (cantilever).
- Maximum available force (UHVD design): 90N
- Linear guide being investigated to be placed just below the forks (from CERATEC)

=> Integrate MCA on the CERATEC moving part

Investigation goals

- Evaluate few topologies of magnets arrangements within the available space
- Simulate the performance using a FEA tool
- Optimize MCA parameters:
 - 1) Generated force
 - => longitudinal force moving the inner part
 - 2) Stiffness
 - => force generated per length difference between inner and outer part of the MCA
 - 3) Attraction force
 - => force between inner and outer part of the MCA (stressing magnets holding structures)
 - 4) force ratio

between generated force 1) / attraction force 3)

Suggest a prototype strategy

"Characteristic Analysis of Tubular-Type Permanent-Magnet Linear Magnetic Coupling Based on Analytical Magnetic Field Calculations," in IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1-5, June 2016, Art no. 0604605, doi: 10.1109/TASC.2016.2544948.

Magnetic system integration

- Available surface on the side of the rail is about 25x50mm on each sides
- Preferably place the MCA on both sides of the mover to ٠ balance the forces applied on the mover/rail
- Thickness of the MCA to be optimized to limit weight •
- Airgap should be preferably small but should allow • integration of a vacuum membrane (1mm).

FEA simulation principle Magnets on both sides – longitudinally magnetized wrt displacement Topology 1 – same arrangement as with UHVD tubular design

Magnetic system topologies investigation

Geometries are using the same magnets size (10x5mm SmCo28) Ferromagnetic material is pure Iron

	No magnets in vacuum (Group 1)	Magnets in vacuum (Group 2)					
Longitudinal magnetized		Topology 1 longitudinally magnetized (6 mag.)					
Perpendicular magnetized	Topology 2 perpendicularly magnetized with magnets on one side (3 mag.)	Topology 3 perpendicularly magnetized with magnets on both sides (6 mag.)					
Halbach array magnetized	Topology 4 halbach array with magnets on one sides (5 mag.)	Topology 5 halbach array with magnets on both sides (10 mag.)					

MCA Topologies with in-air magnets only

Planar magnetic coupling for the BWS | 06.06.2024 | J. Emery

Offset, mm

MCA Topologies with in-vacuum magnets (25x10x5mm magnets)

Offset, mm

MCA topologies comparison

Same magnets size (but not the same number of magnets)

Topology # (as per this doc)	In-vac magnets	# Magnets	Magnets orientation (with respect to the linear motion)	pro	cons	Force X (N)	Stiffness	Force Y (N)	Ratio (x/y)
1	Yes	6	longitudinally	known tech (UHVD) good force and ratio (x/y)	Low stiffness	58	9.7	89	0.65
2	No	3	perpendicularly	No magnets in vacuum	Low useful force low x/y ratio	17	3.8	75	0.23
3	Yes	6	perpendicularly	High force and stiffness	Lower force and ratio (x/y) compared to #5 *	85	19.9	143	0.59
4	No	5	Halbach array	No magnets in vacuum	Low useful force low x/y ratio Assembly Repulsion forces	17	6.7	85	0.2
5	Yes	10	Halbach array	High force and stiffness	Assembly # magnets Repulsion forces field leakages**	115	25.6	150	0.87

* before optimization of the geometry

** before shielding

https://www.researchgate.net/publication/3065907 Thermal Stability and Performance Data for SmCo 217 High-Temperature Magnets on PPM Focusing Structures/figures?lo=1 https://cpb.jphy.ac.cn/article/2019/1969/cpb 28 1 017501.html

Magnet size opt (Topology 3)

Distance between magnets opt (Topology 3)

Number of magnets (Topology 3)

Summary and outlook 1/2

- 5 magnet arrangement topologies for the planar Magnetic coupled actuator has been investigated using a FEA tool called FEMM.
- Installing this system on both sides of rail mover available space (2x 56x25mm active areas), the sum of the perpendicular force will be ~0
- Options without magnets in vacuum have low useful force ~17N
- Options with magnets in vacuum have good performance (Topology 1, 3, 5)
- The topology 3 (perpendicular orientation of the magnets) provides the best compromise between performance, manufacturing and flexibility.
- By setting the number of magnets, stiffness and max force can be set in 6 steps, if MCA on both sides: 9 N/mm to 90 N/mm stiffness 23 N to 289 N maximum force
- Reference system (UHVD) 30 N/mm stiffness 90N maximum force

Summary and outlook 2/2

- Evaluate Eddy currents in the vacuum membrane due to the magnetic flux variation induced by the magnet's motions
- Evaluate magnet ends leakages and how to shield it
- Experimental test of the selected geometry to benchmark simulation

Application of Multiple Unipolar Axial Eddy Current Brakes for Lightweight Electric Vehicle Braking

https://www.mdpi.com/2076-3417/10/13/4659

home.cern

Topology 5 (Halbach array) leakages

2mm shielding =>

- lower the leakage drastically
- 1.5T into the Iron ~ a little high better to have 3mm
- Small effect of the x force

Number of magnets (Topology 5)

Performance comparison (Topo 3 / 5)

Post meeting optimization of the geometry (to target manufacturing)

CERN

Topology 3: MCA design proposal

If the holder can be open easily for the prototype, we can test different MCA stiffness/max force by adding or removing magnets in the spaces

Generated force Fx (Horizontal plane)

topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm.FEM max force: 144.68 N, Stiffness: 45.6 N/mm ratio(x/y): 0.88
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-2mm-edges.FEM max force: 136.61 N, Stiffness: 42.95 N/mm ratio(x/y): 0.86
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-ferromagnetic-holder.FEM max force: 137.88 N, Stiffness: 42.77 N/mm ratio(x/y): 0.87
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-trapezoidal-mag-v1.FEM max force: 167.69 N, Stiffness: 45.82 N/mm ratio(x/y): 0.84
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-trapezoidal-mag-v2.FEM max force: 159.47 N, Stiffness: 43.1 N/mm ratio(x/y): 0.85
 topo-3-6x6-mag-6x6mm-SmCo32-gap-2mm-amagnetic-holder-v1.FEM max force: 123.13 N, Stiffness: 46.5 N/mm ratio(x/y): 0.89
 topo-3-6x6-mag-6x6mm-SmCo32-gap-2mm-amagnetic-holder-v2.FEM max force: 125.66 N, Stiffness: 47.07 N/mm ratio(x/y): 0.89
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-amagnetic-holder-v2.FEM max force: 125.66 N, Stiffness: 47.07 N/mm ratio(x/y): 0.89

Generated force Fy (Vertical plane)

topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm.FEM max force: -165.08 N, Stiffness: 43.38 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-2mm-edges.FEM max force: -158.05 N, Stiffness: 41.54 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-ferromagnetic-holder.FEM max force: -159.14 N, Stiffness: 41.15 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-trapezoidal-mag-v1.FEM max force: -198.97 N, Stiffness: 43.77 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-trapezoidal-mag-v2.FEM max force: -187.31 N, Stiffness: 41.36 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-2mm-amagnetic-holder-v1.FEM max force: -138.38 N, Stiffness: 44.07 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-2mm-amagnetic-holder-v2.FEM max force: -141.09 N, Stiffness: 45.44 N/mm
 topo-3-6x6-mag-6x6mm-SmCo32-gap-4mm-amagnetic-holder-v3.FEM max force: -159.37 N, Stiffness: 42.21 N/mm

Influence of the air gap to the generated force in Fx (Horizontal plane) at 4mm displacement

