ISRS STATUS & OPORTUNITIES

Ismael Martel

University of Huelva

ISOLDE Superconducting Recoil Separator

- R&D ACTIVITIES Spanish grant
- Where we are?
- WP0: Coordination and communication
- Physics program
- Beam dynamics
- Study of Injection/Extraction systems
- MAGDEM magnet
- Field Mapping System
- Ion test bench
- Focal plane detector
- Multiharmonic buncher
- Summary
- Opportunities/investments

ISOLDE Superconducting Recoil Separator

The ISOLDE Superconducting Recoil Separator (ISRS) is a high-resolution separator that combines focal plane spectroscopy with particle and gamma detection at reaction target. LOI-INTC-228 (2021). Spokespersons: I. Martel, O. Tengblad, J. Cederkall

Mission: Expand the HIE-ISOLDE physics program.

Multi-harmonic buncher

•

Spanish grant (RRF/EU): 3 MEuro. July 2023 – Dec. 2025. → Scope of LOI activities was scaled to budget & timeline.

→ Univ. Huelva (Coordinator), ESS Bilbao, Univ. Valencia, IEM-CSIC-Madrid

Website: https://www.uhu.es/isrs/

Linkedin: ISRS-ISOLDE

X (twiter): ISRS-ISOLDE

-n

WP1. STUDY OF BEAM DYNAMICS, INJECTION AND EXTRACTION SYSTEMS	WP2. CCT SOLENOIDS AND CRYOSTATS.	WP3. MULTI-HARMONIC BUNCHER
 T1.1. Selection of physics cases T1.2. Nuclear reaction calculations T1.3. Study of beam dynamics T1.4. Selection of configuration T1.5. Injection/Extraction T1.6. Non-interceptive beam diagnostics 	 T2.1. Prot. of solenoid T2.2. Prot. of sol. + cryostat (MAGDEM) T2.3. MAGDEM focusing system T2.4. Magnetic field meas. system T2.5. Prot. of focal plane detector 	T3.1. Multi-Harmonic Buncher T3.2. RF distribution Control System T3.3. Ion Test Bench Diagnostics
T1.7. High-order corrections WP Leader: UV Collaborators: UHU, IEM/CSIC	WP Leader: UHU Collaborators: IEM/CSIC, UV	WP Leader: ESSB

Where we are?

		1st July 2023			.9 June 20	<mark>)24</mark>	31 Dec. 2025			
		2023		20)24			20	25	
	WORK PACKAGE	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27
WP1	STUDY OF BEAM DYNAMICS, INJECTION AND EXTRACTION SYSTEMS			40%						
WP2	CCT SOLENOIDS AND CRYOSTATS			50%						
WP3	MULTIHARMONIC BUNCHER			40%						

WP0: Coordination and communication

WP Leader: UHU

LOI – Spokespersons

Overall coordination of the project

- I. Martel, U. Huelva, Spain.
- O. Tengblad, IEM-CSIC, Madrid.
- J. Cederkall, U. Lund, Sweden.

LOI - Scientific Advisory Committee (SAC) Monitor and review status of LOI activities

- ISOLDE Collaboration spokesperson: J. S. Freeman
- ISOLDE Technical group: J. A. Rodríguez
- ISOLDE Users community: G. de Angelis, INFN, Italy
- External experts: P. Delahaye, GANIL, France

Project Management Board (PMB) – Spanish grant Monitor and review status of Spanish grant activities

- Univ. Huelva: I. Martel
- Univ. Valencia: J. Resta
- IEM-CSIC-Madrid: T. Kurtukian-Nieto
- ESS-Bilbao: I. Bustinduy

This structure can be replicated for additional grants

Physics program → ISRS performance requirements

<u>Selection of physics cases</u> \rightarrow ISRS Collaboration meetings

- ✓ Nuclear structure studies around N≈ 82, 126.
- ✓ Nucleosynthesis around $Z \approx 50$ and $Z \approx 82$.
- ✓ Neutron-rich nuclei in Terra Incognita (⁷⁸Ni, r-nuclei ~N=126).
- ✓ Shell-quenching and the r-process.
- Reaction dynamics studies, collective phenomena, nucleonnucleon correlations.

<u>Nuclear reaction calculations</u> \rightarrow Reaction codes, theory community

- Coulomb breakup/dissociation
- Transfer reactions in inverse kinematics
- Fusion-evaporation reactions in inverse kinematics
- Low energy transfer, breakup and fusion reactions
- ightarrow Optimisation of ISRS configuration for selected physics cases
- \rightarrow Recoil distributions for beam dynamics simulations

Example of physics case: study of r-process waiting point at N=126. Focal plane decay spectroscopy.

Courtesy of T. Kurtukian-Nieto, CSIC Madrid

Momentum acceptance	±10%	ISRS – coupled to	•	Setup of nuclear reactions calculations framework, Eg. FRESCO, PACE4
Resolving power $p/\Delta p$	2000	detector arrays		
Angular acceptance	±10°	• ISS	•	Selection of physics cases/calculations
Angular resolution	0.1°	MINIBALL		(d, n) (d, n) (n, d) (n, n) transfer reactions 111; 68NI; 118A g, and 232Da
Solid angle	100 msr			- (u,n), (u,p),(p,u),(p,n) transfer reactions,Li,Ni,Ag, andRa
Charge resolution $\Delta Q/Q$	1/70 (FWHM)	• SEC		- Multinucleon transfer (¹³⁶ Xe+ ²⁰⁸ Pb -> 204Pt) and inelastic scattering
Mass resolution $\Delta M/M$	1/250 (FWHM)	• SAND		
Rotation	$0 - 70^{\circ}$	• AGATA	•	ISRS PHYSICS WORKSHOP, SEPTEMBER 2024, HUELVA (SPAIN)

Beam dynamics → optimization of ISRS performance

- Selection of machine layouts and lattices
- Study of Injection/Extraction → It is a project by itself
- Beam diagnostics

The ISRS Zoo

Realistic simulations using 3D magnetic field map

Multipolar optimisation for 36-degree curve trajectory

Study of Injection/Extraction systems

- Efficient injection/extraction system
- Activity just started !!

Fast-kicker system for rare-RI ring Y. Yamaguchi et al2015 Phys. Scr . 2015 014056 Stripline kicker for integrable optics test accel. A. Sergey, 1607.00023 (arxiv.org)

Combination of kicker+ SuShi magnet

SuShi SC magnet for the Future Circular Collider D. Barna et al. IEEE Transactions in Applied Superconductivity 29 (2019), 4900108

Big challenge!

- Available space for injection ~ 700 mm
- Different options being considered, like e.g. "inbeam kicker" systems.

CCT magnets and cryostats \rightarrow prototype of magnets and ion test bench

MAGDEM magnet

- Multifunction nested SC CCT straight magnet, dipole + quad, ironfree, cryocooler cooling (no LHe bath).
- Geometry/fields given by ISRS ring dimensions & beam dynamics.
- Contracts: Little Beast Engineering for solenoid design and ACS for cryostat design and integration.
- Minimum length, maximum beam aperture, minimum current.
- Magnetic forces density map.
- Standard cooling time 6 days; LN₂ precooling to 2 days.
- Technical design report delivered last February 2024.
- Tender published (28/05/2024).

Cryostat Aperture: 200 mm Diameter: 900 mm Length: 775 mm Cryocoolers: 2 x 2 st Giord-McMahon.

580 mm

Field Mapping System (prototype)

ightarrow check MAGDEM magnetic field quality

- 32x2 pixels Hall sensors array
- Axial displacement: 0.01 mm (programmable)
- Rotation: 0.01° (programmable)
- Magnetic field resolution: < 1/1000

Subscale system ready: → operation and software (control/field)

3D field plot

Full scale system:

- ightarrow Technical design ready
- ightarrow all components already purchased, waiting for delivery

Ion test bench

- \rightarrow probe ISRS beam dynamics and operation principles
- \rightarrow linear spectrometer (limited A/Q resolution)

Installation at XT03

	EN 1991 25		0 ×
JEN Control System (v0.1)	M H	Wei -	
Custon Start Harr	hanna Chaole Conson		
System Start - name Please, ensure that the detected hardware for a test if pro	DWALE CHECK SCREEN peerly detected and connected to th	e expected IO Channels.	
Detected Hardware	1/0 Channel	Status	
R WATEN DUTLIN	Ch 81	Ready	
BS MACCEN UNIT 42	Ch 82	Ready	
🖻 Focalizer 🕅	Ch 83	Detecting	
Of Unican Device	Ch 84	Unkanim Device	

Reaction chamber

Integration at UHUTest at CMAM-Madrid

Focal plane detector

- Needed for Z identification, energy and ToF
- Prototyping focal plane detectors:

Monolitic Si, SiC, LaBr3, BGO

- Collaboration with
 - IMB-CSIC
 - Politécnico di Milano
 - University of West Scotland, UK
- Development of new SiC detectors.
- Preliminary tests using standard electronics from MESYTEC.
- Ion tests foreseen at CMAM Madrid using pulsed beams.

5MV Tandetron at CMAM, Madrid

MESYTEC electronics chain

a) Photo of the monolithic detector.

SiC developed at IMB-CSIC

New SiC being developed at IEM-CSIC in collaboration with IMB-CSIC

Multiharmonic buncher

Reduce by a factor 10 the frequency of the HIE-ISOLDE LINAC. The objective is to develop a prototype of:

- Multi-Harmonic Buncher
- RF distribution Control System
- Ion Test Bench

Operation combined with EBIS.

Status

- MHB conceptual design is completed.
- ACCT (AC Current Transformer) was designed, fabricated and tested at ESSB (in-beam).
- Control system based on PyDev EPICS module is under development.
- Fast Faraday cup (FFC) prototype was developed.

In-flange ACCT prototype

Test of ACCT with low energy beam at ESSB

Summary

- Spanish grant started in July 2023 and will finish by the end of December 2025
- Activities are being developed smoothly
- Expected outcomes:
 - Conceptual Design Report
 - Prototypes of:

SC magnets - ion test bench - focal plane detector - MHB buncher - magnetic scanning system

Opportunities/investments

- Welcome to WPs \rightarrow Personnel, Funds, Technical feedbacks now, but also after 2025!!
- Injection/extraction system \rightarrow big challenge! Prototyping not covered by Spanish grant.
- Additional detectors (MR-TOF), Plunger, LaBr3 array
- Ion test bench installation (during LS3, 2026-2028)
- Multi-harmonic buncher installation (during LS3, 2026-2028)
- Offline test site at CERN (during LS3, 2026-2028)
- Future construction/commissioning of ISRS (post LS3); ~ 10 MEuro

ISRS Collaboration

Inst. de Física, UNAM, México. Dpt. CC Integradas, Univ. Huelva, Spain. IPNO, Univ. Paris-Sud, Orsay, France. Dpt. of Physics, Univ. Liverpool, UK. IEM, CSIC, Madrid, Spain. ESS- BILBAO, Bilbao, Spain. CERN, Geneva, Switzerland. Dpt. of Physics, Univ. Surrey, UK. Dpt. of Physics, Lund Univ., Sweden. Univ. Edinburgh, UK. LNL INFN, Italy. Uppsala Univ., Sweden. Dpt. of Physics and Astronomy, Aarhus Univ., Denmark. Dpt. of Physics, Chalmers Univ. of Technology, Göteborg, Sweden. CENGB, Gradignan, France. Dpt. of Physics, Univ. York, UK. School of Comp., Eng. & Phys. Sciences, Univ. West Scotland, UK. ICMUV, Univ. de Valencia, Spain Cockcroft Institute, Daresbury, UK. APC, Paris, France. Faculty of Mathematics and Science, Univ. Jyvaskyla, Finland. IMIS Univ. Riyadh, Saudi Arabia. IFIN-HH, Bucharest, Romania.

