The Muon Shot — Combining energy with precision

DEŚY

'This is our Muon Shot'

T. Han/W. Kilian/N. Kreher/Y. Ma/JRR/T. Striegl/K. Xie arXiv: 2108.05362 [JHEP]

HELMHOLTZ

Celada/Han/Kilian/Kreher/Ma/Maltoni/ Pagani/JRR/Striegl/Xie, arXiv:2312.13082 [JHEP] P. Bredt, W. Kilian, JRR, P. Stienemeier arXiv: 2208.09438 [JHEP]

Jürgen R. Reuter

04/10/24 | By Laura Dattaro
The US physics community dreams of building a muon collider.

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

K. Mękała/JRR/A.F. Żarnecki, arXiv: 2301.02602 [PLB] + arXiv:2312.05223 [JHEP]

K. Korshynska, M. Löschner, M. Marinichenko, K. Mękała/JRR, arXiv: 2402.18460 [EPJC]

Explore Overviews

- Ş US Snowmass 2021 Summer Study: great enthusiasm for high-energy Muon Colliders (MuC)
- Ş Road map in P5 (Particle Physics Projects Prioritization Panel) report: the Muon Shot

The Muon Shot

← P5 report

Ş EPPSU 2020: MuC R&D (accelerator roadmap) \implies start of IMCC

Explore Overviews

Ş US Snowmass 2021 Summer Study: great enthusiasm for high-energy Muon Colliders (MuC) Ş Road map in P5 (Particle Physics Projects Prioritization Panel) report: the Muon Shot → P5 report

A 10 TeV pCM collider (muon collider, FCC-hh, or possible wakefield collider) will provide the most comprehensive increase in BSM discovery potential (Recommendation 4a). Dramatic increases in sensitivity are expected for both model-dependent and model-independent searches. Such a collider will be able to reach the thermal WIMP target for minimal WIMP candidates and hence will play a critical role in providing a definitive test for this class of models.

For example, a muon collider, if technologically achievable and affordable, presents a great opportunity to bring a new collider to US soil. A 10 TeV collider fits on the Fermilab site and is a good match with Fermilab's strengths. Its development has synergies with the neutrino program beyond

The Muon Shot

Ş EPPSU 2020: MuC R&D (accelerator roadmap) \implies start of IMCC

Explore Overviews

Ş US Snowmass 2021 Summer Study: great enthusiasm for high-energy Muon Colliders (MuC) Ş Road map in P5 (Particle Physics Projects Prioritization Panel) report: the Muon Shot → P5 report

A 10 TeV pCM collider (muon collider, FCC-hh, or possible wakefield collider) will provide the most comprehensive increase in BSM discovery potential (Recommendation 4a). Dramatic increases in sensitivity are expected for both model-dependent and model-independent searches. Such a collider will be able to reach the thermal WIMP target for minimal WIMP candidates and hence will play a critical role in providing a definitive test for this class of models.

For example, a muon collider, if technologically achievable and affordable, presents a great opportunity to bring a new collider to US soil. A 10 TeV collider fits on the Fermilab site and is a good match with Fermilab's strengths. Its development has synergies with the neutrino program beyond

The Muon Shot

$$m_{\mu} = 0.1056 \,\text{GeV} \approx 207 \cdot m_e$$

 $\Gamma_{\mu} = 3 \cdot 10^{-19} \,\text{GeV} \quad \tau_{\mu} = 2.2 \,\mu\text{s}$
 $c\tau_{\mu} \approx 660 \,\text{m}$

The glory of a muon collider

- Short lifetime: difficult to get high-quality/lumi beams Muons pointlike objects: cleaner environment than hh Difficult cooling of beams Much less synchrotron radiation than electrons considerable progress: MICE collaboration \blacksquare Much smaller beam energy spread: $\Delta E \approx 0.1 - 0.001\%$ Beam-induced bkgds (BIP) from decay @ IP Radiation hazard from beam dump (neutrinos)

J. R. Reuter, DESY

The glory of a muon collider

- Short lifetime: difficult to get high-quality/lumi beams Muons pointlike objects: cleaner environment than hh Difficult cooling of beams **Much less synchrotron radiation than electrons** considerable progress: MICE collaboration \blacksquare Much smaller beam energy spread: $\Delta E \approx 0.1 - 0.001\%$ Beam-induced bkgds (BIP) from decay @ IP

J. R. Reuter, DESY

Radiation hazard from beam dump (neutrinos)

$$\begin{array}{c|c} \sqrt{s} & \int \mathcal{L}dt \\ 3 \ {\rm TeV} & 1 \ {\rm ab}^{-1} \\ 10 \ {\rm TeV} & 10 \ {\rm ab}^{-1} \\ 14 \ {\rm TeV} & 20 \ {\rm ab}^{-1} \end{array}$$

1901.06150; 2001.04431; PoS(ICHEP2020)703; Nat.Phys.17, 289-292; IMCC study group

The glory of a muon collider

- Short lifetime: difficult to get high-quality/lumi beams Muons pointlike objects: cleaner environment than hh Difficult cooling of beams **Much less synchrotron radiation than electrons** considerable progress: MICE collaboration \mathbf{M} Much smaller beam energy spread: $\Delta E \approx 0.1 - 0.001\%$ Beam-induced bkgds (BIP) from decay @ IP

J. R. Reuter, DESY

Radiation hazard from beam dump (neutrinos)

$$\begin{array}{c|c} \sqrt{s} & \int \mathcal{L}dt \\ 3 \ {\rm TeV} & 1 \ {\rm ab}^{-1} \\ 10 \ {\rm TeV} & 10 \ {\rm ab}^{-1} \\ 14 \ {\rm TeV} & 20 \ {\rm ab}^{-1} \end{array}$$

1901.06150; 2001.04431; PoS(ICHEP2020)703; Nat.Phys.17, 289-292 IMCC study group

Siting at FNAL

J. R. Reuter, DESY

Site filler Accelera

Largest
 Radius is ~2.65 km
 ~16.5 km Circumferenc
 ~2/3 LHC

~RCS accelerator If B_{ave} = 3 T $\rightarrow E_{\mu}$ = 2.4 TeV (B_{max} = 8T, B_{pulse} =±2T)

Doubled ? $B_{ave} = 6.3 T \rightarrow E_{\mu} = 5 TeV$ $(B_{max} = 16T, B_{pulse} = \pm 4T)$

10 TeV collider Collider Ring ~10 km $B_{ave} = 10 T$ $\tau_{II} = 0.104 s$

Siting at FNAL

J. R. Reuter, DESY

Siting at CERN

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

Siting at CERN

J. R. Reuter, DESY

Beam-induced background for the machine-detector interface (MDI)

Seminar, U. of Warsaw, 7.6.2024

 \smile

J. R. Reuter, DESY

Beam-induced background for the machine-detector interface (MDI)

Seminar, U. of Warsaw, 7.6.2024

 \smile

J. R. Reuter, DESY

Beam-induced background for the machine-detector interface (MDI)

VBF Higgs

Seminar, U. of Warsaw, 7.6.2024

Three lamppost BSM searches

Scrutiny of 2nd generation Yukawa couplings

Search for Heavy Neutral Currents

Search for Heavy Neutral Leptons

J. R. Reuter, DESY

Motivation: Mass generation to be tested for all particles

Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/ Xie, arXiv: 2108.05362 [JHEP] + arXiv:2312.13082 [JHEP]

Motivation: GUTs, B-L, difficulty of global symmetries

K. Korshynska, M. Löschner, M. Marinichenko, K. Mękała/JRR, arXiv: 2402.18460 [EPJC]

Motivation: neutrino masses, LFV, CP violation, GUTs

K. Mękała/JRR/A.F. Żarnecki, arXiv: 2301.02602 [PLB] + arXiv:2312.05223 [JHEP]

Multi-Bosons: Elusive couplings

J. R. Reuter, DESY

EFT Modelling of SM μ -H coupling deviations

- with precision of 5-10% [ATLAS-PHYS-PUB-2014-016]
 - Higgs muon Yukawa coupling connected to muon mass [in the SM!]
 - Model-independent test for this coupling; directly, not relying on decays \bullet
 - Sensitivity to the sign (and maybe phase) of coupling

SM: $\kappa = 1$

or $\Delta \kappa = 0$

H

ĸyμ

 μ^+

 μ

Non-linear representation (HEFT) vs. Linear representation ([truncated] SMEFT)

$$p = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi^{+} \\ v + H + i\phi^{0} \end{pmatrix} \qquad \mathcal{L}_{\varphi} = \begin{bmatrix} -\bar{\mu}_{L}y_{\mu}\varphi\mu_{R} + \sum_{n=1}^{N} \frac{C_{\mu\varphi}^{(n)}}{\Lambda^{2n}} (\varphi^{\dagger}\varphi)^{n} \bar{\mu}_{L}\varphi\mu_{R} + \text{h.c.} \\ \hline \text{Generalized } (\mu) \text{ Yukawa sector} \\ \mu^{+} \qquad H_{1} \\ \mu^{-} \qquad H_{i} \\ H_$$

$$\mathcal{L}_{\varphi} = \begin{bmatrix} -\bar{\mu}_{L} y_{\mu} \varphi \mu_{R} + \sum_{n=1}^{N} \frac{C_{\mu\varphi}^{(n)}}{\Lambda^{2n}} (\varphi^{\dagger} \varphi)^{n} \bar{\mu}_{L} \varphi \mu_{R} + \text{h.c.} \end{bmatrix}$$

$$\frac{\text{Generalized } (\mu) \text{ Yukawa sector}}{\left[Y_{\ell} \delta_{k,1} - \sum_{n=n_{k}}^{M-1} \frac{C_{\mu\varphi}^{(n)}}{\Lambda^{2n}} \left(2n+1 \atop k \right) \frac{v^{2n+1-k}}{2^{n}} \right]} = 0 = \mu^{-}$$

$$\frac{\mu^{-}}{H_{i+1}}$$

$$\frac{\mu^{-}}{H_{i+1}}$$

$$\frac{\mu^{-}}{H_{i+1}}$$

$$\frac{\mu^{-}}{H_{i+1}}$$

J. R. Reuter, DESY

• Evidence for muon Yukawa coupling at LHC (not yet 5σ) [ATLAS: 2007.07830 ; CMS: 2009.04363]

• Projections for the high-luminosity LHC (HL-LHC): (model-dependent) sensitivity

Multi-boson final states

Subtle cancellation between Yukawa coupling and multi-boson final states

- (Multi-) boson final states: longitudal polarizations dominate high energies
- Analytic calculations can be approximated by Goldstone-boson Equivalence Theorem (GBET) [NPB261(1985) 379; PRD34(1986) 379]
- New physics parameterized by EFT operator insertions (Wilson coeff. C_X)

[hep-ph/0106281]

- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- **Mathematical Second Se**

States with multiplicity 2

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero

		$\Delta \sigma^X / \Delta \sigma^{W^+W^-}$									
			SMEFT	HEFT							
X	\dim_6	\dim_8	$\dim_{6,8}$	$\dim_{6,8}^{\mathrm{matched}}$	\dim_{∞}	$\dim^{\mathrm{matched}}_\infty$					
W^+W^-	1	1	1	1	1	1					
ZZ	1/2	1/2	1/2	1/2	1/2	1/2					
ZH	1	1/2	1	1	$R_{(2),1}^{ m HEFT}$	1					
HH	9/2	25/2	$R_{(2),1}^{ m SMEFT}/2$	0	$2 R_{(2),2}^{ m HEFT}$	0					

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- **I** Final simulation: using UFO files in WHIZARD

States with multiplicity 3

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero

			$\Delta \sigma^{\lambda}$	$K/\Delta\sigma^{W^+W^-H}$			
			SMEFT		HEFT		
$\mu^+\mu^- \to X$	\dim_6	\dim_8	$\dim_{6,8}$	$\dim_{6,8}^{\mathrm{matched}}$	\dim_{∞}	$\dim^{\mathrm{matched}}_\infty$	
WWZ	1	1/9	$R^{ m SMEFT}_{(3),1}$	1/4	$R_{(3),1}^{ m HEFT}/9$	1/4	
ZZZ	3/2	1/6	$3R_{(3),1}^{ m SMEFT}/2$	3/8	$R_{(3),1}^{ m HEFT}/6$	3/8	
WWH	1	1	1	1	1	1	
ZZH	1/2	1/2	1/2	1/2	1/2	1/2	
ZHH	1/2	1/2	1/2	1/2	$2R_{(3),2}^{ m HEFT}$	1/2	
HHH	3/2	25/6	$3R_{(3),2}^{ m SMEFT}/2$	75/8	$6R_{(3),3}^{ m H\acute{E}FT}$	0	

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- **I** Final simulation: using UFO files in WHIZARD

States with multiplicity 4

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero

			SMEFT		HEFT			
$\mu^+\mu^- \to X$	$dim_{6,8}$	dim_{10}	$dim_{6,8,10}$	$dim_{6,8,10}^{matched}$	dim_∞	$dim^{matched}_\infty$		
WWWW	2/9	2/25	$2 R_{(4),1}^{\text{SMEFT}}/9$	1/2	$R_{(4),1}^{HEFT}/18$	1/2		
WWZZ	1/9	1/25	$R_{(4),1}^{SMEFT}/9$	1/4	$R_{(4),1}^{HEFT}/36$	1/4		
ZZZZ	1/12	3/100	$R_{(4),1}^{SMÉFT}/12$	3/16	$R_{(4),1}^{HEFT}/48$	3/16		
WWZH	2/9	2/25	$2 R_{(4),1}^{SMEFT}/9$	1/2	$R_{(4),2}^{HEFT}/8$	1/2		
WWHH	1	1		1		1		
ZZZH	1/3	3/25	$R_{(4),1}^{SMEFT}/3$	3/4	$R_{(4),2}^{HEFT}/12$	3/4		
ZZHH	1/2	1/2	1/2	1/2	1/2	1/2		
ZHHH	1/3	1/3	1/3	1/3	$3 R_{(4),3}^{HEFT}$	1/3		
HHHH	25/12	49/12	$25 R_{(4),2}^{SMEFT}/12$	1225/48	$12 R_{(4),4}^{H\acute{E}FT}$	0		

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- Final simulation: using UFO files in WHIZARD

States with multiplicity 4

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero

			SMEFT		Γ
$\mu^+\mu^- \to X$	$dim_{6,8}$	dim_{10}	$dim_{6,8,10}$	$dim_{6,8,10}^{matched}$	
WWWW	2/9	2/25	$2 R_{(4),1}^{\text{SMEFT}}/9$	1/2	Γ
WWZZ	1/9	1/25	$R_{(4),1}^{SMEFT}/9$	1/4	
ZZZZ	1/12	3/100	$R_{(4),1}^{SMÉFT}/12$	3/16	
WWZH	2/9	2/25	$2 R_{(4),1}^{SMEFT}/9$	1/2	Γ
WWHH	1	1		1	
ZZZH	1/3	3/25	$R_{(4),1}^{SMEFT}/3$	3/4	
ZZHH	1/2	1/2	1/2	1/2	
ZHHH	1/3	1/3	1/3	1/3	
HHHH	25/12	49/12	$25 R_{(4),2}^{SMEFT}/12$	1225/48	

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

Kinematic separation of signal

Kinematic separation between multi-boson direct production and VBF, e.g. 10 TeV:

- WWZ largest cross section, but small deviation
- WWH large cross section and considerable deviation
- ZZH smaller/-ish cross section, but largest (relative) deviation
- Direct production has almost full energy (except for ISR) $\implies M_{3B}$
- VBF generates mostly forward bosons $\implies \Theta_B$
- Separation criterion for final state bosons $\implies \Delta R_{BB}$

J. R. Reuter, DESY

arXiv: 2108.05362

Cut flow	$\kappa_{\mu} = 1$	w/o ISR	$\kappa_{\mu} = 0 \ (2)$	CVBF	N
$\sigma ~[{ m fb}]$			WWH		
No cut	0.24	0.21	0.47	2.3	
$M_{3B} > 0.8\sqrt{s}$	0.20	0.21	0.42	$5.5\cdot10^{-3}$	3.7
$10^{\circ} < \theta_B < 170^{\circ}$	0.092	0.096	0.30	$2.5\cdot 10^{-4}$	2.7
$\Delta R_{BB} > 0.4$	0.074	0.077	0.28	$2.1\cdot 10^{-4}$	2.4
# of events	740	770	2800	2.1	
S/B			2.8		

Results and final projections

Muon collider with energy range $~1 < \sqrt{s} < 30 \; {\rm TeV}~$ and

- Sensitivity to (deviations of) the muon Yukawa coupling
- \checkmark Definition of # signal events: $S = N_{\kappa_{\mu}} N_{\kappa_{\mu}=1}$
- \checkmark Definition of # background events: $B = N_{\kappa_{\mu}=1} + N_{\text{VBF}}$
- Statistical significance of anom. muon Yukawa couplings:

$${\cal S}={S\over \sqrt{B}}$$
 (note that always: $N_{\kappa_\mu}\geq N_{\kappa_\mu=1}$)

$$\sigma|_{\kappa_{\mu}=1+\delta} = \sigma|_{\kappa_{\mu}=1-\delta} \implies \qquad \mathcal{S}|_{\kappa_{\mu}=1+\delta} = \mathcal{S}|_{\kappa_{\mu}=1-\delta}$$

- \subseteq 5 σ sensitivity to 20% @ 10 TeV 2% @ 30 TeV
- Sensitivity to κ translates to new physics scale Λ

$$\Lambda > 10 ~{\rm TeV} \sqrt{rac{g}{\Delta \kappa_{\mu}}}$$

J. R. Reuter, DESY

luminosity
$$\mathcal{L} = \left(rac{\sqrt{s}}{10 \,\, {
m TeV}}
ight)^2 10 \,\, {
m ab}^{-1}$$

1901.06150; 2001.04431; PoS(ICHEP2020)703; Nat.Phys.17, 289-292

arXiv: 2108.05362

Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, arXiv:2312.13082

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions $E_{L/R}$
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

J. R. Reuter, DESY

Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, arXiv:2312.13082

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions $E_{L/R}$
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu} \mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n} ar{\mu} \mu H^n. \end{aligned}$$
 $y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v} lpha_n, \qquad \qquad f_{V,n} = eta_n \lambda \end{aligned}$

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$

J. R. Reuter, DESY

Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, arXiv:2312.13082

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu} \mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n} ar{\mu} \mu H^n. \ y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v} lpha_n, \qquad \qquad f_{V,n} = eta_n \lambda \end{aligned}$$

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$

J. R. Reuter, DESY

S	$E_{L/R}$
):	

	0	1	2	3	4	5
0	-	Z	$Z^2,\!W^2$	$Z^3 \ W^2 Z$	$Z^4,W^4 \ W^2 Z^2$	$Z^5, W^2 Z^3 \ W^4 Z$
1	Η	ZH	$W^2 H \ Z^2 H$	$W^2 Z H \ Z^3 H$	$W^4H,Z^4H \ W^2Z^2H$	-
2	H^2	ZH^2	$W^2 H^2 \ Z^2 H^2$	$W^2 Z H^2 \ Z^3 H^2$	_	_
3	H^3	ZH^3	$W^2H^3\ Z^2H^3$	-	-	-
4	H^4	ZH^4	-	-	-	-
5	H^5	-	-	-	-	-

Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, arXiv:2312.13082

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu} \mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n} ar{\mu} \mu H^n. \ y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v} lpha_n, \qquad \qquad f_{V,n} = eta_n \lambda \end{aligned}$$

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$

J. R. Reuter, DESY

		0	1	2	3	4	5
s <i>E_{L/R}</i>):	0	_	Z	$Z^2,\!W^2$	$Z^3 \ W^2 Z$	$Z^4,W^4 \ W^2 Z^2$	$Z^5, W^2 Z^3 \ W^4 Z$
	1	Η	ZH	$W^2 H \ Z^2 H$	$W^2 Z H \ Z^3 H$	$W^4H,Z^4H\ W^2Z^2H$	-
	2	H^2	ZH^2	$W^2 H^2 \ Z^2 H^2$	$W^2 Z H^2 \ Z^3 H^2$	-	-
	3	H^3	ZH^3	$W^2H^3\ Z^2H^3$	-	-	-
	4	H^4	ZH^4	-	-	-	-
	5	H^5	_	_	_	-	_

Perturbative Unitarity bound

\sqrt{s}		3]	ГeV		10 TeV					
	$\alpha_{2(3)} = 1^{\dagger}$	SM LO	Loop	VBF	$lpha_{2(3)}=1^{\dagger}$	SM LO	Loop	VBF		
σ [fb]		2H								
No cut	$2.4\cdot10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	0.951	$2.4\cdot10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	3.80		
$M_F > 0.8\sqrt{s}$	$2.4\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$6.12\cdot 10^{-4}$	$2.4\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	$6.50\cdot 10^{-4}$		
$ \theta_{iB} > 10^{\circ}$	$2.3\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$1.18\cdot 10^{-4}$	$2.3\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.1\cdot 10^{-4}$	$3.46\cdot 10^{-5}$		
event #	23	_	2.6	0.12	230	_	4.1	0.3		
σ [fb]				31	H					
No cut	$3.1 \cdot 10^{-2}$	$3.0\cdot10^{-8}$	$1.1\cdot 10^{-5}$	$3.69\cdot 10^{-4}$	$3.7\cdot10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$5.52\cdot 10^{-3}$		
$M_F > 0.8\sqrt{s}$	$3.1\cdot10^{-2}$	$3.0\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$2.84\cdot 10^{-6}$	$3.7\cdot 10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.85\cdot 10^{-5}$		
$ heta_{iB} > 10^{\circ}$	$3.0\cdot10^{-2}$	$2.8\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$6.82\cdot 10^{-7}$	$3.5\cdot 10^{-1}$	$2.2\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.37\cdot 10^{-5}$		
$\Delta R_{BB} > 0.4$	$2.9\cdot 10^{-2}$	$2.7\cdot 10^{-8}$	$8.1\cdot 10^{-6}$	$6.07\cdot 10^{-7}$	$3.4\cdot10^{-1}$	$2.1\cdot 10^{-9}$	$6.8\cdot 10^{-7}$	$7.22\cdot 10^{-5}$		
event #	29	_	_	_	3400	_	—	0.7		

J. R. Reuter, DESY

Results for $\mu^+\mu^- \to V^k H^l$

\sqrt{s}		3]	ГeV		10 TeV				
	$lpha_{2(3)}=1^\dagger$	SM LO	Loop	VBF	$lpha_{2(3)}=1^\dagger$	SM LO	Loop	VBF	
σ [fb]		2H							
No cut	$2.4\cdot10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	0.951	$2.4\cdot10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	3.80	
$M_F > 0.8\sqrt{s}$	$2.4\cdot10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$6.12\cdot 10^{-4}$	$2.4\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	$6.50\cdot 10^{-4}$	
$ \theta_{iB} > 10^{\circ}$	$2.3\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$1.18\cdot 10^{-4}$	$2.3\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.1\cdot10^{-4}$	$3.46\cdot 10^{-5}$	
event #	23	_	2.6	0.12	230	_	4.1	0.3	
σ [fb]				3.	H				
No cut	$3.1 \cdot 10^{-2}$	$3.0\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$3.69\cdot 10^{-4}$	$3.7\cdot10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$5.52\cdot 10^{-3}$	
$M_F > 0.8\sqrt{s}$	$3.1\cdot10^{-2}$	$3.0\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$2.84\cdot 10^{-6}$	$3.7\cdot 10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.85\cdot10^{-5}$	
$ \theta_{iB} > 10^{\circ}$	$3.0\cdot10^{-2}$	$2.8\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$6.82\cdot 10^{-7}$	$3.5\cdot 10^{-1}$	$2.2\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.37\cdot 10^{-5}$	
$\Delta R_{BB} > 0.4$	$2.9\cdot 10^{-2}$	$2.7\cdot 10^{-8}$	$8.1\cdot 10^{-6}$	$6.07\cdot 10^{-7}$	$3.4\cdot 10^{-1}$	$2.1\cdot 10^{-9}$	$6.8\cdot 10^{-7}$	$7.22\cdot 10^{-5}$	
event $\#$	29	—	—	_	3400	_	—	0.7	

J. R. Reuter, DESY

Results for $\mu^+\mu^- \to V^k H^l$

\sqrt{s}		3]	ГeV		10 TeV					
	$lpha_{2(3)}=1^\dagger$	SM LO	Loop	VBF	$lpha_{2(3)}=1^\dagger$	SM LO	Loop	VBF		
σ [fb]		2H								
No cut	$2.4\cdot10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	0.951	$2.4\cdot10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	3.80		
$M_F > 0.8\sqrt{s}$	$2.4\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$6.12\cdot 10^{-4}$	$2.4\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	$6.50\cdot 10^{-4}$		
$ \theta_{iB} > 10^{\circ}$	$2.3\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$1.18\cdot 10^{-4}$	$2.3\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.1\cdot 10^{-4}$	$3.46\cdot 10^{-5}$		
event #	23	—	2.6	0.12	230	—	4.1	0.3		
σ [fb]				3.	H					
No cut	$3.1 \cdot 10^{-2}$	$3.0\cdot10^{-8}$	$1.1\cdot 10^{-5}$	$3.69\cdot 10^{-4}$	$3.7\cdot10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$5.52\cdot10^{-3}$		
$M_F > 0.8 \sqrt{s}$	$3.1\cdot10^{-2}$	$3.0\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$2.84\cdot 10^{-6}$	$3.7\cdot 10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.85\cdot 10^{-5}$		
$ \theta_{iB} > 10^{\circ}$	$3.0\cdot10^{-2}$	$2.8\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$6.82\cdot 10^{-7}$	$3.5\cdot 10^{-1}$	$2.2\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.37\cdot 10^{-5}$		
$\Delta R_{BB} > 0.4$	$2.9\cdot 10^{-2}$	$2.7\cdot 10^{-8}$	$8.1\cdot 10^{-6}$	$6.07\cdot 10^{-7}$	$3.4\cdot10^{-1}$	$2.1\cdot 10^{-9}$	$6.8\cdot 10^{-7}$	$7.22\cdot 10^{-5}$		
event $\#$	29	_	—	_	3400	—	—	0.7		

J. R. Reuter, DESY

Results for $\mu^+\mu^- \to V^k H^l$

Combination of $\mu\mu \rightarrow HH, HVV, V^k$

\sqrt{s}		$3 { m TeV}$				10 TeV				
	$lpha_{2(3)}=1^\dagger$	SM LO	Loop	VBF	$lpha_{2(3)}=1^{\dagger}$	SM LO	Loop	VBF		
σ [fb]		2H								
No cut	$2.4\cdot10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	0.951	$2.4 \cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	3.80		
$M_F > 0.8\sqrt{s}$	$2.4\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$6.12\cdot 10^{-4}$	$2.4\cdot10^{-2}$	$1.3\cdot 10^{-9}$	$4.2\cdot 10^{-4}$	$6.50\cdot 10^{-4}$		
$ \theta_{iB} > 10^{\circ}$	$2.3\cdot 10^{-2}$	$1.6\cdot 10^{-7}$	$2.6\cdot 10^{-3}$	$1.18\cdot 10^{-4}$	$2.3\cdot 10^{-2}$	$1.3\cdot 10^{-9}$	$4.1\cdot 10^{-4}$	$3.46\cdot 10^{-5}$		
event #	23	—	2.6	0.12	230	_	4.1	0.3		
σ [fb]				3.	H					
No cut	$3.1 \cdot 10^{-2}$	$3.0\cdot10^{-8}$	$1.1\cdot 10^{-5}$	$3.69\cdot 10^{-4}$	$3.7\cdot10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$5.52\cdot10^{-3}$		
$M_F > 0.8\sqrt{s}$	$3.1\cdot10^{-2}$	$3.0\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$2.84\cdot 10^{-6}$	$3.7\cdot 10^{-1}$	$2.3\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.85\cdot 10^{-5}$		
$ \theta_{iB} > 10^{\circ}$	$3.0\cdot10^{-2}$	$2.8\cdot 10^{-8}$	$1.1\cdot 10^{-5}$	$6.82\cdot 10^{-7}$	$3.5\cdot10^{-1}$	$2.2\cdot 10^{-9}$	$1.7\cdot 10^{-6}$	$7.37\cdot 10^{-5}$		
$\Delta R_{BB} > 0.4$	$2.9\cdot 10^{-2}$	$2.7\cdot 10^{-8}$	$8.1\cdot 10^{-6}$	$6.07\cdot 10^{-7}$	$3.4\cdot10^{-1}$	$2.1\cdot 10^{-9}$	$6.8\cdot 10^{-7}$	$7.22\cdot 10^{-5}$		
event $\#$	29	_	—	_	3400	_	—	0.7		

J. R. Reuter, DESY

Results for $\mu^+\mu^- \to V^k H^l$

Combination of $\mu\mu \rightarrow HH, HVV, V^k$

Search for Heavy Neutral Currents

J. R. Reuter, DESY

- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes: $\mu^+\mu^- \to f\bar{f}$ $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:

- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes: $\mu^+\mu^- \to f\bar{f}$ $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:

Seminar, U. of Warsaw, 7.6.2024

- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes: $\mu^+\mu^- \to f\bar{f}$ $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:
- \square Forward-backward asymmetries: $A_{FB}^f(\mu^+\mu^- \to f\bar{f})$
- \square Tau polarization asymmetries: $A_{pol.}^{\tau}(\mu^+\mu^- \rightarrow \tau^+\tau^-)$
- Binned angular distributions
- \square Left-right asymmetries: $A_{LR}^f(\mu^+\mu^- \to f\bar{f})$ (needs beam polarization)
- \Box Spin-sensitive processes $(\mu^+\mu^- \rightarrow W^+W^-, t\bar{t})$

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes: $\mu^+\mu^- \to f\bar{f}$ $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:
- \square Forward-backward asymmetries: $A_{FR}^f(\mu^+\mu^- \to f\bar{f})$
- \square Tau polarization asymmetries: $A_{pol.}^{\tau}(\mu^+\mu^- \rightarrow \tau^+\tau^-)$
- Binned angular distributions
- \square Left-right asymmetries: $A_{LR}^f(\mu^+\mu^- \to f\bar{f})$ (needs beam polarization)
- \Box Spin-sensitive processes $(\mu^+\mu^- \rightarrow W^+W^-, t\bar{t})$

Investigated Z' models: (1) Sequential SM (SSM)

- (2) $E_6, SU(2)_L \otimes SU(2)_R$ (LR)
- Littlest Higgs (LH), Simplest Little Higgs (SLH) (3)
- $U(1)_X$ model (4)
- (5) many more

Seminar, U. of Warsaw, 7.6.2024

Resolving power for Z^{\prime}

Normalization of couplings:

	$g_{Z'}$
\mathbf{SSM}	$e/(s_W c_W)$
E_6 , LR	e/c_W
ALR	$e/(s_W c_W \sqrt{1 - 2s_W^2})$
LH	e/s_W
USLH, AFSLH	$e/(c_W\sqrt{3-4s_W^2})$
$\mathrm{U}(1)_X$	$e/(4c_W)$

J. R. Reuter, DESY

Resolving power for Z'

K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, 2402.18460

J. R. Reuter, DESY

Model parameters to be determined: vector and axial vector couplings v, a

$$\mathcal{O}_{i} \in \left\{\sigma_{tot}, A_{FB}^{f}, A_{LR}^{f}\right\}$$
wer: $\chi^{2}_{model} = \sum_{i=1}^{n_{ob}} \left(\frac{\mathcal{O}_{i}^{model} - \mathcal{O}_{i}(v, a)}{\Delta \mathcal{O}_{i}(v, a)}\right)^{2} < 5.99 \text{ for 95\% CL}$
sertainties: $\frac{\Delta \sigma_{tot}}{\sigma_{tot}} = \frac{1}{\sqrt{N}}, \qquad \Delta A_{FB} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}, \qquad \Delta A_{LR} = \sqrt{\frac{1 - A_{LR}^{2}}{N}}$

Collider luminosity: $\mathscr{L}_{int}(E_{CM}) = 10 \text{ ab}^{-1} \cdot E_{CM}/10 \text{ TeV}$

Resolving power for Z'

K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, 2402.18460

Collider lumino

f $ u$	e	u	d	-	ALR					AFSLH				
	SSI	Μ		$2v_f'$	$s_W^2-rac{1}{2}$	$rac{5}{2}s_W^2-1$	$rac{1}{2}-rac{4}{3}s_W^2$	$rac{1}{6}s_W^2$	$2v_f^\prime ~~{1\over 2}-s_W^2$	$rac{1}{2}-2s_W^2$	$-rac{1}{2}+rac{4}{3}s_W^2$	$rac{1}{3}s_W^2$ -		
$2v_f'$ $rac{1}{2}$	$2s_W^2-rac{1}{2}$	$rac{1}{2}-rac{4}{3}s_W^2$	$rac{2}{3}s_W^2-rac{1}{2}$	$2a_f'$	$s_W^2 - rac{1}{2}$	$-rac{1}{2}s_W^2$	$s_W^2 - rac{1}{2}$	$-rac{1}{2}s_W^2$	$2a_f^\prime ~~{1\over 2}-s_W^2$	$\frac{1}{2}$	$-\frac{1}{2}$	s_W^2 –		
$2a'_f$ $\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$		LH				$\mathrm{U}(1)_X$					
	E_{e}	6		$2v'_c$	<u></u>	<u> </u>	<u></u>	<u> </u>	$2v_f^\prime \; -x_H - x_{ar{e}}$	$a = -3x_H - x_H$	$_{\Phi}$ $rac{5}{3}x_{H}+rac{1}{3}x_{\Phi}$	$-\frac{1}{3}x_{H} +$		
$2v'_f 3A+B$	4A	0	-4A	-• _J	4s	4s	4s	4s	$2a_f^\prime ~~-x_H$	x_H	$-x_H$	x_H		
$2a'_f 3A+B$	2(A+B)	2(B-A)	2(A+B)	$2a_f$	$\overline{4s}$	$-\frac{1}{4s}$	$\overline{4s}$	$-\overline{4s}$						
	LF	3		-		US	LH							
$2v'_f$ $\frac{1}{2r}$	$\frac{1}{\alpha} - \frac{\alpha}{2}$	$\frac{\alpha}{2} - \frac{1}{2\alpha}$	$-\frac{1}{2\alpha}-\frac{\alpha}{2}$	$2v_f'$	$rac{1}{2}-s_W^2$	$rac{1}{2}-2s_W^2$	$rac{1}{2}+rac{1}{3}s_W^2$	$rac{1}{2}-rac{2}{3}s_W^2$						
$2a'_f \qquad \frac{1}{2a}$	$\alpha \qquad 2$ $\frac{\alpha}{2}$	$2 3\alpha$ $-\frac{\alpha}{2}$	$\frac{3\alpha}{2}$	$2a_f'$	$rac{1}{2}-s_W^2$	$\frac{1}{2}$	$rac{1}{2}-s_W^2$	$\frac{1}{2}$						
<u> </u>	2	2	Z											
				חחו					Cominar			<u> </u>		
/					ριιρί Ι				Seminar			/////		

J. R. Reuter, DESY

Model parameters to be determined: vector and axial vector couplings v, a

$$\mathcal{O}_{i} \in \left\{\sigma_{tot}, A_{FB}^{f}, A_{LR}^{f}\right\}$$
wer: $\chi^{2}_{model} = \sum_{i=1}^{n_{ob}} \left(\frac{\mathcal{O}_{i}^{model} - \mathcal{O}_{i}(v, a)}{\Delta \mathcal{O}_{i}(v, a)}\right)^{2} < 5.99 \text{ for 95\% CL}$
certainties: $\frac{\Delta \sigma_{tot}}{\sigma_{tot}} = \frac{1}{\sqrt{N}}, \qquad \Delta A_{FB} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}, \qquad \Delta A_{LR} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}$

osity:
$$\mathscr{L}_{int}(E_{CM}) = 10 \text{ ab}^{-1} \cdot E_{CM}/10 \text{ TeV}$$

J. R. Reuter, DESY

Mass reach and discrimination

Seminar, U. of Warsaw, 7.6.2024

 $E_{CM} = 10 \text{ TeV}, \quad P = 1, \quad M_{Z'} = 30 \text{ TeV}$

J. R. Reuter, DESY

Results for discrimination

 $E_{CM} = 10 \,\mathrm{TeV}, \quad \mathscr{L} = 10 \,\mathrm{ab}^{-1}, \quad M_{Z'} = 30 \,\mathrm{TeV}$

J. R. Reuter, DESY

Results for discrimination

 $E_{CM} = 10 \,\text{TeV}, \quad \mathscr{L} = 10 \,\text{ab}^{-1}, \quad P = 1$

J. R. Reuter, DESY

Results for discrimination

J. R. Reuter, DESY

Results for discrimination

Systematic uncertainties should be tuned down to the level of ~ 1 per cent

Search for Heavy Neutral Leptons (HNL)

J. R. Reuter, DESY

The neutrino mystery

- Neutrinos masses is already physics beyond the standard model G
- Simple extension of SM: just add ν_R and Yukawa couplin
- $-M_{\nu} \overline{\nu^{C}} \nu$ Singlet allows for a Majorana mass term:

ngs
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)

The neutrino mystery

- G Neutrinos masses is already physics beyond the standard model
- Simple extension of SM: just add ν_R and Yukawa couplin
- $-M_{\nu} \nu^{C} \nu$ Singlet allows for a Majorana mass term:

ngs
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)

Seminar, U. of Warsaw, 7.6.2024

Simplified neutrino model

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$ $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_N W$ k=1 l=e

J. R. Reuter, DESY

Simplified neutrino model

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \qquad \text{for } k = 1, 2, 3$ $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_N W$ k=1 l=e

J. R. Reuter, DESY

Incomplete literature:

Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750

Simplified neutrino model

Simplified model with right-handed (ν SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with ν SM neutrinos Lagrangian: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ $\mathcal{L}_N = \xi_{\nu} \cdot \left(\bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$ $\mathcal{L}_{ZN\nu} = -\frac{g}{2\cos\theta_W} Z_\mu \sum_{k=1}^3 \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k \sum_{l=e}^\tau \bar{N}_k \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k \sum_{l=$ $\mathcal{L}_{HN\nu} = -\frac{gm_N}{2M_W} h \sum_{k=1}^{3} \sum_{l=1}^{\tau} \bar{N}_k V_{lk}^* P_L \nu_l + \text{ h.c.}$ k=1 l=e

J. R. Reuter, DESY

Incomplete literature:

Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750

- Material At lepton colliders, single production possible
- \checkmark Associated production: $\ell^+\ell^- \rightarrow \nu N$
- \checkmark Vector boson fusion: $\ell^+\ell^- \to \bar{\nu}\nu N + \ell^+\ell^- N$
- \checkmark Three neutrino masses: $M_{N_1}, M_{N_2}, M_{N_3}$
- Mine real mixing parameters: $V_{\ell k}$, $\ell = e, \mu \tau, k = N_1, N_2, N_3$
- \checkmark Three neutrino widths: $\Gamma_{N_1}, \Gamma_{N_2}, \Gamma_{N_3}$

- At lepton colliders: optimal channel single production with decay to $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

- At lepton colliders: optimal channel single production with decay to $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings: $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$ $\mathbf{\underline{\mathbf{N}}}$

- Neutrinos masses: $100 \,{\rm GeV} \le M_{M_1} \le 10.5 \,{\rm TeV}$, $M_{N_{2,3}} = 10^{10} \,{\rm GeV}$
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only, no LLP signature displaced vertices possible for $M_N \lesssim 10 \,\mathrm{GeV}$

J. R. Reuter, DESY

- At lepton colliders: optimal channel single production with decay to $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings: $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$

- Neutrinos masses: $100 \,\text{GeV} \le M_{M_1} \le 10.5 \,\text{TeV}$, $M_{N_{2,3}} = 10^{10} \,\text{GeV}$ $\boxed{}$
- Neutrino widths: $\Gamma_N \gtrsim O(1 \text{ keV})$ prompt decays only, no LLP signature displaced vertices possible for $M_N \lesssim 10 \,\mathrm{GeV}$

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2202.06703; 2301.02602

- At lepton colliders: optimal channel single production with decay to $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings: $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$

- Neutrinos masses: $100 \,{\rm GeV} \le M_{M_1} \le 10.5 \,{\rm TeV}$, $M_{N_{2,3}} = 10^{10} \,{\rm GeV}$ $\boxed{}$
- Neutrino widths: $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$ prompt decays only, no LLP signature displaced vertices possible for $M_N \lesssim 10 \,\mathrm{GeV}$
 - Background simulation: without N propagators ("background")
 - Signal simulation: $\ell \ell \to N \nu \to \ell j j \nu$ ("signal")
 - $S/B \sim 10^{-3}$ e.g. ILC500: $jj\ell\nu$ bkgd. ~ 10 pb, signal ~ 10 fb
 - Preselection on signal topology: exactly 1 lepton and 2 jets
 - BDT training; CLs method to get final results

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2202.06703; 2301.02602

Bkgd processes with at least one lepton

•
$$\mu^{+}\mu^{-} \rightarrow jj\ell^{\pm}\nu$$

• $\mu^{+}\mu^{-} \rightarrow jj\ell^{+}\ell^{-}$
• $\mu^{+}\mu^{-} \rightarrow \ell^{+}\ell^{-}\ell^{'+}\ell^{'-}$
• $\mu^{+}\mu^{-} \rightarrow jj\ell^{+}\ell^{-}$
• $\mu^{+}\mu^{-} \rightarrow jj\ell^{+}\nu\ell^{-}\bar{\nu}$
• $\mu^{+}\mu^{-} \rightarrow jjj\ell^{\pm}\nu\ell^{-}\bar{\nu}$

•
$$\mu^+\mu^- \to jjjj\ell^+\ell^-$$

Event selection & analysis

J. R. Reuter, DESY

- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!

- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!

BDT response for model in RooStats, CLs method to set cross section limits Combination of e^{\pm} and μ^{\pm} channels

J. R. Reuter, DESY

8 variables considered in BDT

- $m_{qq\ell}$ invariant mass of the dijet-lepton system,
- α angle between the dijet-system and the lepton,
- α_{qq} angle between the two jets,
- E_{ℓ} lepton energy,
- $E_{qq\ell}$ energy of the dijet-lepton system,
- \mathbf{p}_{ℓ}^{T} lepton transverse momentum,
- p_{qq}^T dijet transverse momentum,
- $p_{qq\ell}^T$ transverse momentum of the dijet-lepton system.

Seminar, U. of Warsaw, 7.6.2024

Reach for HNLs

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$

Reach for HNLs

J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$

MuC-10 outperforms FCC-hh-100 over the whole mass range!

- Exclusion limit very similar for Dirac & Majorana neutrino (except: off-shell production)
- Possible discriminant: lepton emission angle in N rest frame

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

Possible discriminant: lepton emission angle in N rest frame

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

Possible discriminant: lepton emission angle in N rest frame

More sophisticated variable: lepton and dijet angles

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

Dirac vs. Majorana discrimination

J. R. Reuter, DESY

Dirac vs. Majorana discrimination

DESY.

J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!

Dirac vs. Majorana discrimination

DESY.

J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!

More difficult, but possible for off-shell case!

- **Mominant** *t*-channel production (*W* exchange):
- **M** On-shell production
- Off-shell more difficult: need to scan each parameter point

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

- **Mominant** *t*-channel production (*W* exchange):
- **M** On-shell production
- **Off-shell** more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

- **Mominant** *t*-channel production (*W* exchange):
- **M** On-shell production
- **Off-shell** more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

- **Mominant** *t*-channel production (*W* exchange):
- **M** On-shell production
- **Off-shell** more difficult: need to scan each parameter point

J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$

Precision simulation for muon colliders — Loops and Legs

J. R. Reuter, DESY

Getty Villa, Pacific Palisades, Etruscan, 525 BC

Precision simulations for muon colliders

finite by construction \mathcal{B} : Born, \mathcal{R} : Real emission, \mathcal{V} : Virtual

J. R. Reuter, DESY

- Automation of NLO corrections in MC generators
- Signal and background samples at full SM QFT interference level:
- $\mu^+\mu^- \rightarrow 2f, 3f, 4f, 5f, 6f, [7 10f] @ NLO QCD \oplus EW$ (arbitrary cuts, fully differential)
 - NLO QCD \oplus EW automated: Whizard v3.1.0+
- Phd theses: C. Weiss, 2017; Chokoufé, 2017; V. Rothe, 2021, P. Stienemeier, 2022; P. Bredt, 2022

Subtraction scheme: FKS cf. Frixione/Kunszt/Signer, hep-ph9512328 Phase-space partition Φ_{n+1} into collinear/soft-singular pairs

finite by KLN

For NLO QCD possible singular regions: $(i, j) \in \{(3, 5), (4, 5)\}$

Seminar, U. of Warsaw, 7.6.2024

NLO QCD — Automation for all colliders

Ş Automatic differential fixed-order results (histogrammed distributions) in MCs Ş Photon isolation, photon recombination, light-, b-, c-jet selection Ş Covers also loop-induced processes ("LO", virtual-squared) Ş One-loop provider (OLP): OpenLoops, Recola, GoSam Ş UFO-based BSM models NLO QCD with Whizard+GoSam

P. Bredt, J. Braun, G. Heinrich, M. Höfer: DESY+KIT

Process	W	HIZARD	
Vector boson (pair) plus jets	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	K
$pp \rightarrow W^{\pm} *$	$1.3749(8) \cdot 10^8$	$1.7696(10) \cdot 10^8$	1.29
$pp \rightarrow W^{\pm}j$ *	$2.046(3) \cdot 10^{7}$	$2.854(5) \cdot 10^{7}$	1.39
$pp \rightarrow W^{\pm}jj$	$6.856(12) \cdot 10^{6}$	$7.814(27) \cdot 10^{6}$	1.14
$pp \rightarrow W^{\pm}jjj$ [†]	$1.840(5) \cdot 10^{6}$	$1.978(7) \cdot 10^{6}$	1.07
$pp \rightarrow Z$	$4.2541(3) \cdot 10^{7}$	$5.4086(16) \cdot 10^{7}$	1.27
$pp \rightarrow Zj$	$7.215(4) \cdot 10^{6}$	$9.733(10) \cdot 10^{6}$	1.35
$pp \rightarrow Zjj$	$2.364(5) \cdot 10^{6}$	$2.676(7) \cdot 10^{6}$	1.13
$pp \rightarrow Zjjj$	$6.381(23) \cdot 10^5$	$6.85(3) \cdot 10^5$	1.07
$pp \rightarrow W^+W^-(4f)$	$7.352(10) \cdot 10^4$	$10.268(11) \cdot 10^4$	1.40
$pp \rightarrow W^+W^-j(4f)$	$2.853(7) \cdot 10^4$	$3.733(7) \cdot 10^4$	1.31
$pp \rightarrow W^+W^-jj(4f)$ *	$1.150(5) \cdot 10^4$	$1.372(6) \cdot 10^4$	1.19
$pp \rightarrow W^+W^+jj$ *	$1.506(5) \cdot 10^2$	$2.235(7) \cdot 10^2$	1.48
$pp \rightarrow W^-W^-jj$	$6.772(24) \cdot 10^{1}$	$9.982(28) \cdot 10^{1}$	1.47
$pp \rightarrow ZW^{\pm}$	$2.780(5) \cdot 10^4$	$4.488(4) \cdot 10^4$	1.61
$pp \rightarrow ZW^{\pm}j$	$1.609(4) \cdot 10^4$	$2.0940(28) \cdot 10^4$	1.30
$pp \rightarrow ZW^{\pm}jj$	$8.06(3) \cdot 10^3$	$9.02(4) \cdot 10^3$	1.12
$pp \rightarrow ZZ^{*}$	$1.0969(10) \cdot 10^4$	$1.4183(11) \cdot 10^4$	1.29
$pp \rightarrow ZZj$	$3.667(9) \cdot 10^{3}$	$4.807(8) \cdot 10^{3}$	1.31
$pp \rightarrow ZZjj$ *	$1.356(6) \cdot 10^{3}$	$1.684(8) \cdot 10^{3}$	1.24

J. R. Reuter, DESY

arXiv:2104.11141

Process	W	HIZARD	
Top quarks plus jets	σ_{LO} [fb]	$\sigma_{\rm NLO}$ [fb]	K
$e^+e^- ightarrow jj$	622.737(8)	639.39(5)	1.03
$e^+e^- \rightarrow jjjj$	340.6(5)	317.8(5)	0.93
$e^+e^- \rightarrow jjjjj$	105.0(3)	104.2(4)	0.99
$e^+e^- ightarrow jjjjjj$	22.33(5)	24.57(7)	1.10
$e^+e^- \rightarrow t\bar{t}$	166.37(12)	174.55(20)	1.05
$e^+e^- \rightarrow t\bar{t}j$	48.12(5)	53.41(7)	1.11
$e^+e^- \rightarrow t\bar{t}jj$	8.592(19)	10.526(21)	1.23
$e^+e^- \rightarrow t\bar{t}jjj$	1.035(4)	1.405(5)	1.36
$e^+e^- \rightarrow t\bar{t}t\bar{t}$	$0.6388(8) \cdot 10^{-3}$	$1.1922(11) \cdot 10^{-3}$	1.87
$e^+e^- \rightarrow t\bar{t}t\bar{t}j$	$2.673(7) \cdot 10^{-5}$	$5.251(11) \cdot 10^{-5}$	1.96

Top quarks plus bosol $\sigma_{\rm TO}[{\rm fb}]$

o [fb]	
--------	--

Top quarks plus boson	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}$ [fb]	K
$e^+e^- ightarrow t \bar{t} H$	2.020(3)	1.912(3)	0.9
$e^+e^- \rightarrow t\bar{t}Hj$	$2.536(4) \cdot 10^{-1}$	$2.657(4) \cdot 10^{-1}$	1.
$e^+e^- \rightarrow t\bar{t}Hjj$	$2.646(8) \cdot 10^{-2}$	$3.123(9) \cdot 10^{-2}$	1.
$e^+e^- \rightarrow t\bar{t}Z$	4.638(3)	4.937(3)	1.
$e^+e^- \rightarrow t\bar{t}Zj$	$6.027(9) \cdot 10^{-1}$	$6.921(11) \cdot 10^{-1}$	1.
$e^+e^- \rightarrow t\bar{t}Zjj$	$6.436(21) \cdot 10^{-2}$	$8.241(29) \cdot 10^{-2}$	1.
$e^+e^- \rightarrow t\bar{t}W^{\pm}jj$	$2.387(8) \cdot 10^{-4}$	$3.716(10) \cdot 10^{-4}$	1.
$e^+e^- \rightarrow t \bar{t} H Z$	$3.623(19) \cdot 10^{-2}$	$3.584(19) \cdot 10^{-2}$	0.9
$e^+e^- \rightarrow t\bar{t}ZZ$	$3.788(6) \cdot 10^{-2}$	$4.032(7) \cdot 10^{-2}$	1.
$e^+e^- \rightarrow t\bar{t}HH$	$1.3650(15) \cdot 10^{-2}$	$1.2168(16) \cdot 10^{-2}$	0.
$e^+e^- \rightarrow t\bar{t}W^+W^-$	$1.3672(21) \cdot 10^{-1}$	$1.5385(22) \cdot 10^{-1}$	1.

NLO QCD — Automation for all colliders

Ş Automatic differential fixed-order results (histogrammed distributions) in MCs Ş Photon isolation, photon recombination, light-, b-, c-jet selection Ş Covers also loop-induced processes ("LO", virtual-squared) Ş One-loop provider (OLP): OpenLoops, Recola, GoSam Ş UFO-based BSM models NLO QCD with Whizard+GoSam

P. Bredt, J. Braun, G. Heinrich, M. Höfer: DESY+KIT

Process	W	HIZARD	
Vector boson (pair) plus jets	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	K
$pp \rightarrow W^{\pm} *$	$1.3749(8) \cdot 10^8$	$1.7696(10) \cdot 10^8$	1.29
$pp \rightarrow W^{\pm}j$ *	$2.046(3) \cdot 10^{7}$	$2.854(5) \cdot 10^{7}$	1.39
$pp \rightarrow W^{\pm}jj$	$6.856(12) \cdot 10^{6}$	$7.814(27) \cdot 10^{6}$	1.14
$pp \rightarrow W^{\pm}jjj$ [†]	$1.840(5) \cdot 10^{6}$	$1.978(7) \cdot 10^{6}$	1.07
$pp \rightarrow Z$	$4.2541(3) \cdot 10^{7}$	$5.4086(16) \cdot 10^{7}$	1.27
$pp \rightarrow Zj$	$7.215(4) \cdot 10^{6}$	$9.733(10) \cdot 10^{6}$	1.35
$pp \rightarrow Zjj$	$2.364(5) \cdot 10^{6}$	$2.676(7) \cdot 10^{6}$	1.13
$pp \rightarrow Zjjj$	$6.381(23) \cdot 10^5$	$6.85(3) \cdot 10^5$	1.07
$pp \rightarrow W^+W^-(4f)$	$7.352(10) \cdot 10^4$	$10.268(11) \cdot 10^4$	1.40
$pp \rightarrow W^+W^-j(4f)$	$2.853(7) \cdot 10^4$	$3.733(7) \cdot 10^4$	1.31
$pp \rightarrow W^+W^-jj(4f)$ *	$1.150(5) \cdot 10^4$	$1.372(6) \cdot 10^4$	1.19
$pp \rightarrow W^+W^+jj$ *	$1.506(5) \cdot 10^2$	$2.235(7) \cdot 10^2$	1.48
$pp \rightarrow W^-W^-jj$	$6.772(24) \cdot 10^{1}$	$9.982(28) \cdot 10^{1}$	1.47
$pp \rightarrow ZW^{\pm}$	$2.780(5) \cdot 10^4$	$4.488(4) \cdot 10^4$	1.61
$pp \rightarrow ZW^{\pm}j$	$1.609(4) \cdot 10^4$	$2.0940(28) \cdot 10^4$	1.30
$pp \rightarrow ZW^{\pm}jj$	$8.06(3) \cdot 10^3$	$9.02(4) \cdot 10^3$	1.12
$pp \rightarrow ZZ^{*}$	$1.0969(10) \cdot 10^4$	$1.4183(11) \cdot 10^4$	1.29
$pp \rightarrow ZZj$	$3.667(9) \cdot 10^{3}$	$4.807(8) \cdot 10^{3}$	1.31
$pp \rightarrow ZZjj$ *	$1.356(6) \cdot 10^{3}$	$1.684(8) \cdot 10^{3}$	1.24

J. R. Reuter, DESY

arXiv:2104.11141

			WHI	ZARI	D
Process		σ_{LO} [f	b]	$\sigma_{\rm NLC}$	5 [f
$e^+e^- ightarrow jj$		622.73	37(8)	639.	39
$e^+e^- \rightarrow jjj$		340.6	(5)	317.	8(5
$e^+e^- \rightarrow jjj$	j	105.0	(3)	104.	2(4
$e^+e^- \rightarrow jjj$	jj	22.33	(5)	24.5	7(7
$e^+e^- \rightarrow jjj$	jjj	3.583	(17)	4.46	(4)
Top quarks plus boso	$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]		K
$e^+e^- ightarrow t \bar{t} H$	2.020(3	3)	1.912(3)		0.9
$e^+e^- \rightarrow t\bar{t}Hj$	2.536(4	$4) \cdot 10^{-1}$	2.657(4)	10^{-1}	1.0
$e^+e^- \rightarrow t\bar{t}Hjj$	2.646(8	$8) \cdot 10^{-2}$	3.123(9)	$\cdot 10^{-2}$	1.1
$e^+e^- \rightarrow ttZ$	4.638(3	3)	4.937(3)		1.0
$e^+e^- \rightarrow ttZj$	6.027($9) \cdot 10^{-1}$	6.921(11)	$\cdot 10^{-1}$	1.1
$e^+e^- \rightarrow ttZjj$	6.436(2)	$21) \cdot 10^{-2}$	8.241(29)	$\cdot 10^{-2}$	1.2
$e^+e^- \rightarrow ttW^{\pm}jj$	2.387(8	$8) \cdot 10^{-4}$	3.716(10)	10^{-4}	1.5
$e^+e^- \rightarrow t\bar{t}HZ$	3.623($19) \cdot 10^{-2}$	3.584(19)	$\cdot 10^{-2}$	0.9
$e^+e^- \rightarrow t\bar{t}ZZ$	3.7880	6) $\cdot 10^{-2}$	4.032(7)	10^{-2}	1.0

 $3.788(6) \cdot 10^{-2}$

 $1.3672(21) \cdot 10^{-1}$

 $e^+e^- \rightarrow t\bar{t}HH$

 $e^+e^- \to t\bar{t}W^+W^-$

Seminar, U. of Warsaw, 7.6.2024

 $1.3650(15) \cdot 10^{-2}$ $1.2168(16) \cdot 10^{-2}$

 $4.032(7) \cdot 10^{-2}$

 $1.5385(22) \cdot 10^{-1}$

30 / 40

Differential distributions NLO QCD

J. R. Reuter, DESY

Differential distributions NLO QCD

J. R. Reuter, DESY

- Matching between NLO real emission from hard ME and parton shower (PS) Whizard uses the POWHEG scheme
- Special cases: Massive/massless emitters, back-to-pack kinematics, running α_s Real partitioning of phase space into singular and finite regions Resonance-aware subtraction: Intermediate resonances handled At the moment: NLO QCD; straightforward (?) QED/EW generalization

Differential distributions NLO QCD

J. R. Reuter, DESY

- Matching between NLO real emission from hard ME and parton shower (PS) Whizard uses the POWHEG scheme
- Special cases: Massive/massless emitters, back-to-pack kinematics, running α_s Real partitioning of phase space into singular and finite regions Resonance-aware subtraction: Intermediate resonances handled At the moment: NLO QCD; straightforward (?) QED/EW generalization

- EW splittings and singular regions
- Careful: EW scheme & renormalization scheme & complex mass scheme & photon definition (off-shell vs. on-shell)
- Photon recombination with fermions for IR-safe observables

EW renorm. schemes & photons entering at Born level

$ar{Q}_{\gamma}^2 o 0$	$Q_{\gamma}^2 \sim { m EW} ~{ m scale}$
on-shell photons	off-shell photons
no γ splittings	$\gamma^* o f ar{f}$
lpha(0)	$lpha _{G_{\mu}},lpha\left(M_{Z} ight)$
$\left[\frac{\delta\alpha(0)}{\alpha(0)} + \delta Z_{AA}\right]_{\text{light}} = 0$	$\begin{bmatrix} \frac{\delta\alpha(M_Z)}{\alpha(M_Z)} + \delta Z_{AA} \end{bmatrix}_{\text{light}} + \delta Z_{\gamma,\text{PDF}}$ $\rightarrow \text{finite overall photon factor} \neq 0$

J. R. Reuter, DESY

with photon virtuality Q_{γ}^2

 $\rightarrow \alpha$ coupling constant, renormalization factors

$\alpha_s \sim 0.1$ $\alpha \sim 0.01$

- EW splittings and singular regions
- Careful: EW scheme & renormalization scheme & complex mass scheme & photon definition (off-shell vs. on-shell)
- Photon recombination with fermions for IR-safe observables

process	$ \alpha^n$	MG5_aMC@NLO $\sigma_{ t NLO}^{ t tot}$ [pb]	WHIZARD $\sigma_{\sf NLO}^{\sf tot}$ [pb]	δ [%]	$\sigma_{ ext{LO}}^{ ext{sig}}$	σ_{NLO}^{sig}
$pp \rightarrow$		[1804.10017]				
$e^+\nu_e$	α^2	5200.5(8)	5199.4(4)	-0.73	0.81	1.24
e^+e^-	$ \alpha^2$	749.8(1)	749.8(1)	-0.50	0.082	0.004
$e^+ u_e\mu^-ar{ u}_\mu$	$\mid lpha^4$	0.52794(9)	0.52816(9)	+3.69	1.27	1.69
$e^+e^-\mu^+\mu^-$	$\mid lpha^4$	0.012083(3)	0.012078(3)	-5.25	0.68	1.26
$He^+ u_e$	α^3	0.064740(17)	0.064763(6)	-4.04	0.06	1.24
He^+e^-	α^3	0.013699(2)	0.013699(1)	-5.86	0.03	0.32
Hjj	α^3	2.7058(4)	2.7056(6)	-4.23	0.67	0.27
tj	$\mid \alpha^2$	105.40(1)	105.38(1)	-0.72	0.20	0.74

LHC setup (Run II): $\sqrt{s} = 13$ TeV $\mu_R = \mu_F = \frac{1}{2} \sum_i \sqrt{p_{T,i}^2 + m_i^2}$ EW scheme: G_{μ} CMS PDF set: LUXqed_plus_PDF4LHC15_nnlo_100 cuts from ref. [1804.10017]

J. R. Reuter, DESY

 $\alpha_{\rm s} \sim 0.1$ $\alpha \sim 0.01$

$$\delta \equiv \frac{\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}}{\sigma_{\rm LO}^{\rm tot}} \qquad \sigma^{\rm sig} \equiv \frac{|\sigma_{\rm WHIZARD}^{\rm tot} - \sigma_{\rm MG5}^{\rm tot}|}{\sqrt{\Delta_{\rm err,WHIZARD}^2 + \Delta_{\rm er}^2}}$$

- EW splittings and singular regions
- Careful: EW scheme & renormalization scheme & complex mass scheme & photon definition (off-shell vs. on-shell)
- Photon recombination with fermions for IR-safe observables

Cross-validation of WHIZARD and MUNICH/MATRIX orig. ref. [Kallweit et. al

process	$\texttt{MUNICH}_{(CS)} \sigma_{\rm NLO}^{\rm tot} \; [\rm fb]$	WHIZARD $\sigma_{ m NLO}^{ m tot}$ [fb]	δ [%]	dev [%]	$\sigma^{ m sig}$
$pp \rightarrow$	+UpenLoops	+UpenLoops			
ZZ	$1.05729(1)\cdot 10^4$	$1.05729(11)\cdot 10^4$	-4.20	0.0001	0.01
W^+Z	$1.71505(2)\cdot 10^4$	$1.71507(2)\cdot 10^4$	-0.15	0.001	0.88
W^-Z	$1.08576(1)\cdot 10^4$	$1.08574(1)\cdot 10^4$	+0.07	0.001	0.90
W^+W^-	$7.93106(7)\cdot 10^4$	$7.93087(21)\cdot 10^4$	+4.55	0.002	0.89
ZH	$6.18523(6)\cdot 10^2$	$6.18533(6)\cdot 10^2$	-5.29	0.002	1.17
W^+H	$7.18070(7) \cdot 10^2$	$7.18072(9)\cdot 10^2$	-2.31	0.0003	0.18
W^-H	$4.59289(4)\cdot 10^2$	$4.59299(5)\cdot 10^2$	-2.15	0.002	1.62
ZZZ	$9.7429(2)\cdot 10^0$	$9.7417(11)\cdot 10^0$	-9.47	0.012	1.01
W^+W^-Z	$1.08288(2)\cdot 10^2$	$1.08293(10)\cdot 10^2$	+7.67	0.004	0.45
W^+ZZ	$2.0188(4)\cdot 10^1$	$2.0188(23)\cdot 10^1$	+1.58	0.0001	0.01
W^-ZZ	$1.09844(2)\cdot 10^1$	$1.09838(12)\cdot 10^1$	+3.09	0.006	0.51
$W^+W^-W^+$	$8.7979(2)\cdot 10^1$	$8.7991(15)\cdot 10^1$	+6.18	0.014	0.79
$W^{+}W^{-}W^{-}$	$4.9447(1)\cdot 10^{1}$	$4.9441(2)\cdot 10^{1}$	+7.13	0.013	2.52
ZZH	$1.91607(2)\cdot 10^0$	$1.91614(18)\cdot 10^0$	-8.78	0.004	0.39
W^+ZH	$2.48068(2)\cdot 10^0$	$2.48095(28)\cdot 10^0$	+1.64	0.011	0.96
$W^- ZH$	$1.34001(1)\cdot 10^{0}$	$1.34016(15)\cdot 10^{0}$	+2.51	0.011	1.02
W^+W^-H	$9.7012(2)\cdot 10^0$	$9.700(2)\cdot 10^{0}$	+9.83	0.014	0.75
ZHH	$2.39350(2) \cdot 10^{-1}$	$2.39337(32) \cdot 10^{-1}$	-11.06	0.005	0.41
W^+HH	$2.44794(2) \cdot 10^{-1}$	$2.44776(24)\cdot 10^{-1}$	-12.04	0.007	0.74
W^-HH	$1.33525(1) \cdot 10^{-1}$	$1.33471(19) \cdot 10^{-1}$	-11.53	0.041	2.80
			4		

LHC setup (Run II),

 $\delta \equiv (\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}) / \sigma_{\rm LO}^{\rm tot},$

 $\text{dev} \equiv |\sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}}| / \sigma_{\text{WHIZARD}}^{\text{tot}}$

J. R. Reuter, DESY

$\alpha \sim 0.01$ $\alpha_{\rm s} \sim 0.1$

l.,	14	12	.51	57]
-----	----	----	-----	-----

- EW splittings and singular regions
- Careful: EW scheme & renormalization scheme & complex mass scheme & photon definition (off-shell vs. on-shell)
- Photon recombination with fermions for IR-safe observables

Cross-validation of WHIZARD and MUNICH/MATRIX orig. ref. [Kallweit et. al., 1412.5157]

process	MUNICH _(CS) $\sigma_{\rm NLO}^{\rm tot}$ [fb]	WHIZARD $\sigma_{ m NLO}^{ m tot}$ [fb]	δ
$pp \rightarrow$	+OpenLoops	+OpenLoops	
ZZ	$1.05729(1) \cdot 10^4$	$1.05729(11) \cdot 10^4$	
W^+Z	$1.71505(2) \cdot 10^4$	$1.71507(2) \cdot 10^4$	(
W^-Z	$1.08576(1)\cdot 10^4$	$1.08574(1)\cdot 10^4$	+ +
W^+W^-	$7.93106(7)\cdot 10^4$	$7.93087(21)\cdot 10^4$	+4
ZH	$6.18523(6)\cdot 10^2$	$6.18533(6)\cdot 10^2$	_!
W^+H	$7.18070(7) \cdot 10^2$	$7.18072(9)\cdot 10^2$	_2
W^-H	$4.59289(4)\cdot 10^2$	$4.59299(5)\cdot 10^2$	-2
ZZZ	$9.7429(2) \cdot 10^0$	$9.7417(11) \cdot 10^0$	_9
W^+W^-Z	$1.08288(2)\cdot 10^2$	$1.08293(10)\cdot 10^2$	+7
W^+ZZ	$2.0188(4) \cdot 10^1$	$2.0188(23)\cdot 10^1$	+:
W^-ZZ	$1.09844(2)\cdot 10^{1}$	$1.09838(12)\cdot 10^1$	+:
$W^{+}W^{-}W^{+}$	$8.7979(2) \cdot 10^1$	$8.7991(15)\cdot 10^1$	+0
$W^{+}W^{-}W^{-}$	$4.9447(1)\cdot 10^1$	$4.9441(2)\cdot 10^{1}$	+7
ZZH	$1.91607(2)\cdot 10^0$	$1.91614(18)\cdot 10^0$	_8
W^+ZH	$2.48068(2)\cdot 10^0$	$2.48095(28)\cdot 10^0$	+:
$W^- ZH$	$1.34001(1)\cdot 10^0$	$1.34016(15)\cdot 10^0$	+2
W^+W^-H	$9.7012(2)\cdot 10^0$	$9.700(2) \cdot 10^0$	+9
ZHH	$2.39350(2) \cdot 10^{-1}$	$2.39337(32) \cdot 10^{-1}$	-11
W^+HH	$2.44794(2) \cdot 10^{-1}$	$2.44776(24) \cdot 10^{-1}$	-12
W^-HH	$1.33525(1) \cdot 10^{-1}$	$1.33471(19) \cdot 10^{-1}$	-11
	tat tat tat	. tat tat	44

LHC setup (Run II),

 $\delta \equiv (\sigma_{\rm NLO}^{\rm tot} - \sigma_{\rm LO}^{\rm tot}) / \sigma_{\rm LO}^{\rm tot},$

 $\text{dev} \equiv |\sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}}| / \sigma_{\text{WHIZARD}}^{\text{tot}}$

J. R. Reuter, DESY

 $\alpha_{\rm s} \sim 0.1$ $\alpha \sim 0.01$

Fixed order differential distributions

for $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$ at NLO EW

- EW splittings and singular regions
- Careful: EW scheme & renormalization scheme & complex mass scheme & photon definition (off-shell vs. on-shell)

Fixed order differential distributions for $pp \rightarrow HHW^+$ at NLO EW DESY. J. R. Reuter, DESY

 $\alpha \sim 0.01$ $\alpha_{\rm s} \sim 0.1$

Mixed NLO QCD/EW corrections

Interfering correction type for $\mathcal{O}(\alpha_s^n)$ for n > 1:

Treatment of photons & gluons in protons/jets on a democratic basis

J. R. Reuter, DESY

Example: $pp \to Zj$ at $\mathcal{O}(\alpha \alpha_s)$: NLO EW contributions from $pp \to Zg\gamma$ at $\mathcal{O}(\alpha^2 \alpha)$ needs mass singularity cancellations from $[\mathscr{B}(q\bar{q} \to Zg) \text{ at } \mathscr{O}(\alpha \alpha_s)] \times [\text{QED splitting}]$ $[\mathscr{B}(q\bar{q} \to Z\gamma) \text{ at } \mathscr{O}(\alpha^2)] \times [\text{QCD splitting}]$

Mixed NLO QCD/EW corrections

Interfering correction type for $\mathcal{O}(\alpha_s^n)$ for n > 1:

Treatment of photons & gluons in protons/jets on a democratic basis

Example: $pp \to Zj$ at $\mathcal{O}(\alpha \alpha_s)$: NLO EW contributions from $pp \to Zg\gamma$ at $\mathcal{O}(\alpha^2 \alpha)$ needs mass singularity cancellations from $[\mathscr{B}(q\bar{q} \to Zg) \text{ at } \mathscr{O}(\alpha \alpha_s)] \times [\text{QED splitting}]$ Comparison with MG5_aMC@NLO for $pp \rightarrow e^+\nu_e j$ and $pp \rightarrow e^+e^- j$ at NLO EW $[\mathscr{B}(q\bar{q} \to Z\gamma) \text{ at } \mathscr{O}(\alpha^2)] \times [\text{QCD splitting}]$ $\sigma^{
m sig}$ δ [%] LO/NLO

process	$ \alpha_s^n \alpha^m$	MG5_aMC@NLO		WHIZ	ARD+OpenLoop
$pp \rightarrow Xj$		$\sigma_{ m LO}^{ m tot}~[{ m pb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m pb}]$	$\sigma_{ m LO}^{ m tot}~[{ m pb}]$	$\sigma_{ m NLO}^{ m tot}~[m pb]$
$e^+ u_e j$	$\alpha_s \alpha^2$	914.81(6)	904.75(8)	914.74(7)	904.59(7)
e^+e^-j	$lpha_s lpha^2$	150.59(1)	149.09(2)	150.59(1)	149.08(2)

LHC-setup (Run II), cuts with photon recombination \mathbf{and} jet clustering

J. R. Reuter, DESY

-1.110.8/1.5-1.000.05/0.4

Mixed NLO QCD/EW corrections

Interfering correction type for $\mathcal{O}(\alpha_s^n)$ for n > 1:

Treatment of photons & gluons in protons/jets on a democratic basis Example: $pp \to Zj$ at $\mathcal{O}(\alpha \alpha_s)$: NLO EW contributions from $pp \to Zg\gamma$ at $\mathcal{O}(\alpha^2 \alpha)$ needs mass singularity cancellations from

Cross-validation with MUNICH/MATRIX using OpenLoops for $pp \rightarrow t\bar{t}$ and $pp \rightarrow t\bar{t} + W^{\pm}/Z/H$ with complete NLO SM corrections, e. g.

		$\sigma^{\rm tot}$ [fb]		
$pp \to t\bar{t}W^+$	$lpha_s^n lpha^m$	$MUNICH_{(CS)}$	WHIZARD	MU
LO_{21}	$lpha_s^2 lpha$	$2.411403(1)\cdot 10^2$	$2.4114(1) \cdot 10^2$	
LO_{12}	$lpha_s lpha^2$	0.000	0.000	
LO_{03}	$lpha^3$	$2.31909(1)\cdot 10^{0}$	$2.3193(1)\cdot 10^{0}$	
$\delta \mathrm{NLO}_{31}$	$lpha_s^3 lpha$	$1.18993(2) \cdot 10^2$	$1.1905(5) \cdot 10^2$	
$\delta \mathrm{NLO}_{22}$	$lpha_s^2 lpha^2$	$-1.09511(9) \cdot 10^{1}$	$-1.0947(3)\cdot 10^{1}$	
$\delta \mathrm{NLO}_{13}$	$lpha_s lpha^3$	$2.93251(3)\cdot 10^{1}$	$2.9334(8)\cdot 10^{1}$	
$\delta \mathrm{NLO}_{04}$	$lpha^4$	$5.759(3) \cdot 10^{-2}$	$5.756(4) \cdot 10^{-2}$	

J. R. Reuter, DESY

 $[\mathscr{B}(q\bar{q} \to Zg) \text{ at } \mathscr{O}(\alpha \alpha_s)] \times [\text{QED splitting}]$ $[\mathscr{B}(q\bar{q} \to Z\gamma) \text{ at } \mathscr{O}(\alpha^2)] \times [\text{QCD splitting}]$ $\sigma^{
m sig}$ / devJNICH_(CS)-WHIZARD $0.72 \ / \ 0.003\%$ 0.00 / 0.000% $1.76 \ / \ 0.009\%$

- 1.06 / 0.048%
- 1.13 / 0.035%
- $1.14 \ / \ 0.030\%$
- 0.58~/~0.049%

NLO correctios for muon colliders

	MCSANCee[37]		WHIZARD+RECOLA			
$\sqrt{s} [\text{GeV}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$	$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$\delta_{ m EW}~[\%]$	$\sigma^{ m sig} (m LO/NLO)$
250	225.59(1)	206.77(1)	225.60(1)	207.0(1)	-8.25	0.4/2.1
500	53.74(1)	62.42(1)	53.74(3)	62.41(2)	+16.14	0.2/0.3
1000	12.05(1)	14.56(1)	12.0549(6)	14.57(1)	+20.84	0.5/0.5

J. R. Reuter, DESY

		$\mu^+\mu^- o t \bar{t} H$	
V]	$\sigma^{LO}[{ m fb}]$	$\sigma^{NLO}[{ m fb}]$	Κ
	0.272	$0.435^{+3.82\%}_{-3.13\%}$	1.601
	2.339	$2.319^{+0.01\%}_{-0.09\%}$	0.991
)	2.008	$1.893^{+0.49\%}_{-0.62\%}$	0.942
)	1.323	$1.192^{+0.81\%}_{-1.08\%}$	0.900
)	2.009	$1.894^{+0.45\%}_{-0.65\%}$	0.942
)	0.406	$0.342^{+1.54\%}_{-1.84\%}$	0.842
)	0.128	$0.102^{+2.22\%}_{-2.55\%}$	0.794
0	0.053	$0.040^{+\bar{3}.01\%}_{-3.11\%}$	0.759
0	0.030	$0.0221^{+3.33\%}_{-3.13\%}$	0.735
		5	

NLO EW

	$\mu^+\mu^- o tar t H$			
$\sqrt{s}[\text{GeV}]$	$\sigma^{LO}[{ m fb}]$	$\sigma^{NLO}[{ m fb}]$	Κ	
500	0.271	0.091	0.335	
800	2.339	1.533	0.655	
1000	2.008	1.402	0.698	
1400	1.323	0.967	0.731	
1000	2.008	1.322	0.658	
3000	0.407	0.296	0.728	
6000	0.128	0.086	0.669	
10000	0.053	0.027	0.516	
14000	0.030	0.017	0.579	

Francesco Ucci, DESY summer student report, 2022

SM EW Corrections to Multi-Bosons at MuC

J. R. Reuter, DESY

arXiv: 2208.09438

$\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{ m LO}^{ m incl}~[{ m fb}]$	$\sigma_{ m NLO}^{ m incl}~[{ m fb}]$	$\delta_{ m EW}$ [%
W^+W^-	$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$	+4.0(2)
ZZ	$2.5988(1)\cdot 10^{1}$	$2.656(2)\cdot 10^{1}$	+2.19(6)
HZ	$1.3719(1)\cdot 10^{0}$	$1.3512(5)\cdot 10^{0}$	-1.51(4)
HH	$1.60216(7)\cdot 10^{-7}$	$5.66(1)\cdot 10^{-7}$ *	
W^+W^-Z	$3.330(2)\cdot 10^{1}$	$2.568(8)\cdot 10^{1}$	-22.9(2)
W^+W^-H	$1.1253(5)\cdot 10^{0}$	$0.895(2)\cdot 10^{0}$	-20.5(2)
ZZZ	$3.598(2)\cdot 10^{-1}$	$2.68(1)\cdot 10^{-1}$	-25.5(3)
HZZ	$8.199(4) \cdot 10^{-2}$	$6.60(3) \cdot 10^{-2}$	-19.6(3)
HHZ	$3.277(1) \cdot 10^{-2}$	$2.451(5) \cdot 10^{-2}$	-25.2(1)
HHH	$2.9699(6)\cdot 10^{-8}$	$0.86(7)\cdot 10^{-8}$ *	
$W^+W^-W^+W^-$	$1.484(1) \cdot 10^0$	$0.993(6) \cdot 10^{0}$	-33.1(4)
W^+W^-ZZ	$1.209(1)\cdot 10^{0}$	$0.699(7) \cdot 10^{0}$	-42.2(6)
W^+W^-HZ	$8.754(8) \cdot 10^{-2}$	$6.05(4) \cdot 10^{-2}$	-30.9(5)
W^+W^-HH	$1.058(1)\cdot 10^{-2}$	$0.655(5) \cdot 10^{-2}$	-38.1(4)
ZZZZ	$3.114(2) \cdot 10^{-3}$	$1.799(7) \cdot 10^{-3}$	-42.2(2)
HZZZ	$2.693(2) \cdot 10^{-3}$	$1.766(6) \cdot 10^{-3}$	-34.4(2)
HHZZ	$9.828(7)\cdot 10^{-4}$	$6.24(2)\cdot 10^{-4}$	-36.5(2)
HHHZ	$1.568(1)\cdot 10^{-4}$	$1.165(4) \cdot 10^{-4}$	-25.7(2)

EW corrections for massive initial state muons

Massive eikonals need special treatment at high energies

Seminar, U. of Warsaw, 7.6.2024

35 / 40

))))

)))

))))

)

Differential results

Experimentally motivated photon veto in hard radiation:

Higgs Transverse Momentum

More tasks for even more realistic predictions: exclusive events w/ matching to QED/weak showers, resummation, off-shell processes, separate VBF from VBS

J. R. Reuter, DESY

 $E_{\gamma} < 0.7 \cdot \sqrt{s}/2$

arXiv: 2208.09438

Higgs rapidity

Higgs scattering angle

Validation of the QED & Sudakov regime

$0.5 \begin{bmatrix} - & HZ \\ - & ZZ \end{bmatrix}$		0.5	
0.4		0.4	
0.3 800		0.3	
0.2		0.2	
$\delta_{QED} =$	$= \sigma_{ m NLO,QED}^{ m incl}/\sigma_{ m L}^{ m incl}$	$O^{\text{ncl}} - 1$	
2 4 6	$\begin{array}{c} 8 & 10 & 12 \\ \sqrt{s} [\text{TeV}] \end{array}$	<u> </u>	
$\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$	$\sigma_{ m LO}^{ m incl}~[{ m fb}]$	$\sigma_{ m LO+ISR}^{ m incl}$ [fb]	$\delta_{ m ISR} \ [\%]$
W^+W^-	$5.8820(2)\cdot 10^{1}$	$7.295(7)\cdot 10^{1}$	+24.0(1)
ZZ	$3.2730(4)\cdot 10^{0}$	$4.119(4) \cdot 10^{0}$	+25.8(1)
HZ	$1.22929(8)\cdot 10^{-1}$	$1.8278(5)\cdot 10^{-1}$	+48.69(4)
W^+W^-Z	$9.609(5)\cdot 10^{0}$	$10.367(8)\cdot 10^{0}$	+7.9(1)
W^+W^-H	$2.1263(9)\cdot 10^{-1}$	$2.410(2)\cdot 10^{-1}$	+13.3(1)
ZZZ	$8.565(4)\cdot 10^{-2}$	$9.431(7)\cdot 10^{-2}$	+10.1(1)
HZZ	$1.4631(6) \cdot 10^{-2}$	$1.677(1) \cdot 10^{-2}$	+14.62(8)
HHZ	$6.083(2)\cdot 10^{-3}$	$6.916(3)\cdot 10^{-3}$	+13.68(6)

arXiv: 2208.09438

J. R. Reuter, DESY

Validation of the QED & Sudakov regime

	0.5	
	0.4	
	0.3	Sec. EW (
	0.2	
$= \sigma^{\text{incl}} \sigma^{\text{incl}}$	$\frac{ncl}{2} - 1$	IR q
°NLO,QED/°L	0^{-1}	Both
$\frac{8}{\sqrt{s}}$ [TeV]	<u>14</u> 16	
$\sigma_{ m LO}^{ m incl}~[{ m fb}]$	$\sigma_{ m LO+ISR}^{ m incl}$ [fb]	$\delta_{ m ISR}$ [%]
$5.8820(2)\cdot 10^{1}$	$7.295(7) \cdot 10^{1}$	+24.0(1)
$3.2730(4)\cdot 10^{0}$	$4.119(4)\cdot 10^{0}$	+25.8(1)
$1.22929(8) \cdot 10^{-1}$	$1.8278(5) \cdot 10^{-1}$	+48.69(4)
$9.609(5)\cdot 10^{0}$	$10.367(8)\cdot 10^{0}$	+7.9(1)
$2.1263(9)\cdot 10^{-1}$	$2.410(2)\cdot 10^{-1}$	+13.3(1)
$8.565(4) \cdot 10^{-2}$	$9.431(7) \cdot 10^{-2}$	+10.1(1)
$1.4631(6) \cdot 10^{-2}$	$1.677(1) \cdot 10^{-2}$	+14.62(8)
$6.083(2) \cdot 10^{-3}$	$6.916(3) \cdot 10^{-3}$	+13.68(6)
	$= \sigma_{\rm NLO,QED}^{\rm incl} / \sigma_{\rm L}^{\rm incl} / \sigma_{\rm Incl} / \sigma_{\rm L}^{\rm incl} / \sigma_{\rm Incl} / \sigma_{\rm Incl} / \sigma_{\rm Incl} / \sigma_{\rm Inc$	$= \sigma_{\text{NLO},\text{QED}}^{\text{incl}} / \sigma_{\text{LO}}^{\text{incl}} - 1$ $\stackrel{\text{0.5}}{\stackrel{\text{0.4}}{\stackrel{\text{0.3}}{\stackrel{\text{0.2}}{\stackrel{\text{0.3}}{\stackrel{\text{0.1}}{\stackrel{\text{0.4}}{\stackrel{\text{0.3}}{\stackrel{\text{0.1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}{\stackrel{1}}}}}$ $\frac{5.8820(2) \cdot 10^1}{3.2730(4) \cdot 10^0}$ $1.22929(8) \cdot 10^{-1}}{1.8278(5) \cdot 10^{-1}}$ $1.8278(5) \cdot 10^{-1}}{1.8278(5) \cdot 10^{-1}}$ $9.609(5) \cdot 10^0$ $2.1263(9) \cdot 10^{-1}}{1.8278(5) \cdot 10^{-1}}$ $8.565(4) \cdot 10^{-2}}{1.677(1) \cdot 10^{-2}}$ $1.4631(6) \cdot 10^{-2}}{1.677(1) \cdot 10^{-2}}$ $1.677(1) \cdot 10^{-2}$ $6.083(2) \cdot 10^{-3}}$ $6.916(3) \cdot 10^{-3}$

arXiv: 2208.09438

J. R. Reuter, DESY

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 6\%$$
$$l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 0.6\%$$

corrections at high energies dominated by EW double & single Sudakov logs evant in kinematic region of Sudakov limit $r_{kl} = (p_k + p_l)^2 \sim s \gg M_W^2$ juasi-divergencies of virtual corrections not cancelled by real EW radiation h initial and final states no EW "color" singlets

Initial State Radiation – Lepton PDFs

J. R. Reuter, DESY

Initial State Radiation — Lepton PDFs

J. R. Reuter, DESY

Conclusions & Outlook

- Muon colliders offer a gigantic physics potential: combination of energy & precision
- Three paradigm search channels presented:
- Anomalous muon-Higgs coupling: sign determination and precision up to 1%
- Heavy Neutrinos: mass reach in off-shell production to several 10s of TeV, Majorana/Dirac disc.
- Heavy Z' (neutral currents): reach up to 70 TeV, with hadronic observables ca. 100 TeV
- Theoretical modelling very challenging, but very interesting:
- Important (but still in infancy) work in QED + EW parton showers with matching
- Regime of EW PDFs, EW parton showers and EW fragmentation: deep in Sudakov regime
- Matching and merging, definition of exclusive vs. inclusive events very complicated

J. R. Reuter, DESY

IMCC Annual Meeting DESY 2025

Just confirmed this week: IMCC annual workshop 2025 at DESY!!! Local Organizing team: Federico Meloni (chair), Jenny List, Priscila Pani, Jürgen Reuter

J. R. Reuter, DESY

Very likely: May 12-16, 2025

~ 200–250 participants

Jenny List Federico Meloni Priscilla Pani Juergen Reuter

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

J. R. Reuter, DESY

$$-i\frac{k!}{\sqrt{2}}\left[Y_{\ell}\delta_{k,1}-\sum_{n=n_{k}}^{M-1}\frac{C_{\mu\varphi}^{(n)}}{\Lambda^{2n}}\begin{pmatrix}2n+1\\k\end{pmatrix}\frac{v^{2n+1-k}}{2^{n}}\right]=$$

J. R. Reuter, DESY

Variations of cross sections with κ

J. R. Reuter, DESY

- 2 independent BDT trainins: Dirac vs. ($\alpha_{BDT} \cdot Majorana + Bkgd.$) & Majorana vs. ($\alpha_{BDT} \cdot Dirac + Bkgd.$)
- $ige \chi^2 \text{like statistics: } T' = \sum_{bins} \frac{[(B+D) (B+M)]^2}{\frac{1}{2}[(B+D) + (B+M)]} + \# \text{ DOF}$
- Statistical test: $T \ge \chi^2_{crit}(DOF) \implies$ signal hypotheses distinguishable
- 2D histograms: $BDT_D + BDT_M$, $BDT_D BDT_M$

- Technical procedure:
- 1. Train BDT for different values α_{BDT}
- 2. For each α_{BDT} : calculate 95% CL limit α_{lim} such that $T(\alpha_{lim}) = \chi^2_{crit}(\text{DOF})$
- 3. Select the best limit: $\alpha_{min} = \min \{\alpha_{lim}\}$
- 4. Set final limit as $V_{\ell N}^{\lim} = \alpha_{\min} \cdot V_{\ell N}^{ref}$

J. R. Reuter, DESY

$$= \sum_{bins} \frac{(D-M)^2}{B + \frac{D+M}{2}} + \# \text{DOF} \qquad T' \longrightarrow T'(\alpha_{lim}) = \sum_{bins} \frac{\alpha_{lim}^2 (D-M)^2}{B + \alpha_{lim} \cdot \frac{D+M}{2}}$$

Why are event generators important?

Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

The importance of MC event generators

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

The importance of MC event generators

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

The importance of MC event generators

Why are event generators important?

Why are event generators non-trivial?

Because all our forward simulation chain depends on them!

Because they contain *all* our knowledge of particle physics!

J. R. Reuter, DESY

- Micro-scale bunches create beam structure/-strahlung Ş
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law) 2.
- Avail.: $[\checkmark]$ Generator for 2D histogrammed fit 3.

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- 2. Parameterized (delta peak \oplus power law)
- Generator for 2D histogrammed fit 3.

Avail.: ✓ Avail.: (✓) Avail.: $[\checkmark]$

Dalena/Esbjerg/Schulte [LCWS 2011]

- Ş Micro-scale bunches create beam structure/-strahlung
- Ş Mostly Gaussian shape for circular machines, but not fully
- Ş Machine simulation with tools like GuineaPig(++), CAIN
- Ş Has to be folded into realistic MC simulations
- Gaussian shape with specific spreads 1.
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.
- Pro (1.): Easy implementation, covers main features
- Ş Gaussian approximative, exceeds nominal collider energy Con (1.):
- Ş Relatively easy implementation Pro (2.):
- Ş Con (2.): Delta peak behaves badly in MC, beams maybe not factorizable/simple power law
- Pro (3.): most exact simulation, generator mode avoids artifacts in tails
- Con (3.): only available (yet) in dedicated tools like LumiLinker and CIRCE2 Ş

J. R. Reuter, DESY

 $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$ $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1 - x_1)^{\beta_1} x_2^{\alpha_2}(1 - x_2)^{\beta_2}$

BSM Modelling in Simulation

J. R. Reuter, DESY

BSM Models: UFO magic

- BSM models available from Lagrangian level tools (LanHEP, SARAH, FeynRules)
- Transferred to MC generator via UFO format: v1 1108.2040 v2:2304.09883
- Allows for all Lagrangian-based BSM models
- Spin 0, 1/2, 1, 3/2, 2 supported (some 3/2, 2 features missing in some MC)
- Majorana fermions and fermion-number violating vertices
- 5-, 6-, 7-, 8-, ... point vertices (optimization for code generation pending)
- Arbitrary Lorentz structures in vertices
- **Mathematical Keeping track of the order of insertions**
- Customized propators
- Exotic colored objects (sextets, decuplets, epsilon structures)
- (S)LHA-style input files from spectrum generators to MC generators (scans!)
- Automated calculations of widths (UFO side vs. MC generator side)
- Long-lived particles, displaced vertices, oscillations in decays (not all MCs yet)
- Lots of bug reports and constructive feedback from many different users
- LO fully supported, NLO (QCD) available on UFO side, but not all MCs

J. R. Reuter, DESY

MuC example for SMEFT/HEFT UFO, from: T. Han et al. arXiv:2108.05362

Seminar, U. of Warsaw, 7.6.2024

47 / 40

Beam simulations (technial details)

CIRCE2 algorithm T. Ohl, 1996, 2005

← Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

(171.306 GuineaPig events in 10.000 bins)

J. R. Reuter, DESY

Beam simulations (technial details)

CIRCE2 algorithm T. Ohl, 1996, 2005

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

J. R. Reuter, DESY

Beam simulations (technial details)

CIRCE2 algorithm T. Ohl, 1996, 2005

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

J. R. Reuter, DESY

1. Run Guinea-Pig++ with

do_lumi=7;num_lumi=100000000;num_lumi_eg=100000000;num_lumi_gg=100000000;

to produce lumi. [eg] [eg].out with (E_1, E_2) pairs.

[Large event numbers, as Guinea-Pig++ will produce only a small fraction!]

2. Run circe2_tool.opt with steering file

```
{ file="ilc500/beams.circe"
                                                # to be loaded by WHIZARD
   design="ILC" roots=500 bins=100 scale=250 # E in [0,1]
    { pid/1=electron pid/2=positron pol=0
                                                # unpolarized e-/e+
      events="ilc500/lumi.ee.out" columns=2
                                                # <= Guinea-Pig</pre>
      lumi = 1564.763360
                                                # <= Guinea-Pig</pre>
      iterations = 10
                                                # adapting bins
                                                # Gaussian filter 5 bins
      smooth = 5 [0, 1) [0, 1)
      smooth = 5 [1] [0,1) smooth = 5 [0,1) [1] } }
```

to produce correlated beam description

3. Run WHIZARD with SINDARIN input:

```
beams = e1, E1 => circe2
$circe2_file = "ilc500.circe"
$circe2_design = "ILC"
?circe_polarized = false
```

3 simulation options

I. Unpolarized simulation with unpol. spectra

2. Pol. simulation: unpol. spectra + pol. beams

3. Polarized spectrum with helicity luminosities

Precision simulations for muon colliders

- What is different to MC event generators for the LHC?
- What is different to MC event generators for (high-energy) electron-positron colliders?
- Where do we stand and what is still needed?

- 1. Beam simulation: mostly Gaussian beam spread (0.01%, very clean)
- 2. Initial-state structure: PDFs, collinear vs. soft resummation, cross section predictions ...
- 3. Hard process (SM): NLO SM automation , NNLO automation (?), QED/EW dominated; EW Sudakov regime
- 4. Exclusive processes (QED/QCD/EW): photons, interleaved showers, EW fragmentation (?)

Collinear logarithms

$$L = \log \frac{Q^2}{m^2}$$

J. R. Reuter, DESY

QED PDFs — QED Initial State Resummation

- Ş
- Ş
 - Universal soft exponentiation factor, provides n_{γ} exclusive resolved photons with (almost) exact kinematics
- Ş Collinear factorization: universal lepton QED PDFs, LL: $(\alpha L)^k$, NLL: $\alpha(\alpha L)^{k-1}$

$$egin{aligned} d\sigma_{kl}(p_k,p_l) &= \sum_{ij=e^+,e^-,\gamma} \int dz_+ dz_- \, \Gamma_{i/k}(z_+,\mu^2,m^2) \, \Gamma_{j/l}(z_+,\mu^2,m^2) \ & imes d\hat{\sigma}_{ij}(z_+p_k,z_-p_l,\mu^2) + \mathcal{O}\left(\left(rac{m^2}{s}
ight)^2
ight) \end{aligned}$$

J. R. Reuter, DESY

Different factorization schemes: focus on collinear logs, $\log \frac{Q^2}{m_{\pi}^2}$, vs. soft logs, $\log \frac{Q^2}{\overline{E^2}}$, cf. 2203.12557 YFS (Yennie-Frautschi-Suura), cf. e.g. 2203.10948 $d\sigma = \sum_{n_{\alpha}}^{\infty} \frac{\exp[Y_{res.}]}{n_{\alpha}!} \prod_{j=1}^{n_{\gamma}} \left[d\text{LIPS}_{j}^{\gamma} S_{res.}(k_{j}) \right] \left[\sigma_{0} + \text{corrections} \right]$ • Implemented in "Krakow" MCs (BHLUMI/BHWIDE, KORAL(W/Z), KKMC-ee, YFS(WW/ZZ), also: Sherpa, w.i.p.: Whizard

$$\begin{split} \mathbb{P}_{\mathrm{S}} &= \begin{pmatrix} P_{\Sigma\Sigma} & P_{\Sigma\gamma} \\ P_{\gamma\Sigma} & P_{\gamma\gamma} \end{pmatrix}, \\ P_{\mathrm{NS}} &= P_{e^{\pm}e^{\pm}} - P_{e^{\pm}e^{\mp}} \equiv P_{ee}^{\mathrm{V}} - \end{split}$$

- Collinear resummation LO/LL Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992
- NLO QED PDFs, collinear evolution @ NLL

Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265

- Inclusive in all initial-state photons
- Gives most precise normalization of total cross section
- Integrable power-like singularity 1/(1-z) for $z \to 1$
- Numerical stability differs in different QED renormalization schemes, DIS vs. MS
- **Also:** fast interpolation (CTEQ-like) grids available
- Implementations available in MG5 and Whizard
- Different levels of precision possible: NLL+NLO, LL+NLO, LL+NLO, LL+LO
- Different names in literature: electron structure functions, ISR structure functions
- "Photon PDF" (a.k.a. EPA, Weizsäcker-Williams) Γ_{γ} , peaked at small z
- Very well known from ILC/CLIC simulations: "virtual photon"-induced processes
- At very high energies lepton colliders become $\gamma\gamma$ colliders (like LHC is gg)

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

51 / 40

- Collinear resummation LO/LL Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992
- NLO QED PDFs, collinear evolution @ NLL

Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265

- Inclusive in all initial-state photons
- Gives most precise normalization of total cross section
- Integrable power-like singularity 1/(1-z) for $z \rightarrow 1$
- Numerical stability differs in different QED renormalization schemes, DIS vs. MS
- **Also:** fast interpolation (CTEQ-like) grids available
- Implementations available in MG5 and Whizard
- Different levels of precision possible: NLL+NLO, LL+NLO, LL+NLO, LL+LO
- Different names in literature: electron structure functions, ISR structure functions
- "Photon PDF" (a.k.a. EPA, Weizsäcker-Williams) Γ_{γ} , peaked at small z
- Very well known from ILC/CLIC simulations: "virtual photon"-induced processes
- At very high energies lepton colliders become $\gamma\gamma$ colliders (like LHC is gg)

J. R. Reuter, DESY

Seminar, U. of Warsaw, 7.6.2024

51 / 40

- **Collinear resummation LO/LL** Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992
- NLO QED PDFs, collinear evolution @ NLL

Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265

- Inclusive in all initial-state photons
- Gives most precise normalization of total cross section
- Integrable power-like singularity 1/(1-z) for $z \to 1$
- Numerical stability differs in different QED renormalization schemes, DIS vs. MS
- **Also:** fast interpolation (CTEQ-like) grids available
- Implementations available in MG5 and Whizard
- Different levels of precision possible: NLL+NLO, LL+NLO, LL+NLO, LL+LO
- **D** Different names in literature: electron structure functions, ISR structure functions
- \Box "Photon PDF" (a.k.a. EPA, Weizsäcker-Williams) Γ_{γ} , peaked at small z
- Very well known from ILC/CLIC simulations: "virtual photon"-induced processes
- At very high energies lepton colliders become $\gamma\gamma$ colliders (like LHC is gg)

J. R. Reuter, DESY

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844
- Ancient name (from SSC times!): EWA ("Effective W approximation)
- **G** Fully inclusive in collinear/forward/beam direction
- □ Also: fast interpolation (CTEQ-like) grids available

- **C** Collinear factorization not in QED, but in full SM

- $\Box \gamma \gamma$ part (quasi-) identical to collinear QED lepton PDFs
- Factorization has coherent interference $\gamma\gamma/\gamma Z/ZZ$
- Trivial on the PDF infrastructure side, complication for ME generation
- □ Work in progress in MG5 and Whizard
- □ Has to be accompanied by EW fragmentation functions (event selection!)

J. R. Reuter, DESY

- **Collinear factorization not in QED**, but in full SM

52 / 40

(Resonance) Matching to shower / hadronization

Solution:

J. R. Reuter, DESY