Missing Semester Lecture 5 Notes

Version Control tracks changes to source code, facilitates collaboration
How familiar is everyone with git? (Usually it varies a lot by person)
Git tracks snapshots of things, and useful metadata (time machine)
Useful for LOTS of different kinds of work (even by yourself)
Understanding git's data model makes it easy to use its interface
Model: Trees (folders) and blobs (files), like your OS structure
Git thinks in history snapshots (what you tell it to know when/where)
Its graph-theory model also has metadata about authors, notes, etc.
Git snapshots == commits, which have parents, data, and metadata
Git object types: blob, tree, or commit. That's it!!!! (mostly)

Note the underlying memory model, links with pointers (fancy, refs)
Note that git history is immutable, but git references ARE mutable
Objects + references = a git repository (that's pretty much it)

ALL git commands manipulate references’s data OR objects’ data

Using git through a simple demo, working with the actual git interface
Does everyone understand the staging area vs. commits?
Note that it can be REALLY useful to control what you add/commit
HEAD is a special reference in git to “what you're looking at now"
Github and GitLab are hosts for git repositories (remote vs. local)
"git checkout " lets you move around in your commit history
Remember that "git checkout™ moves HEAD and can destroy things
“git diff " is a useful way to understand how git is thinking on the fly
Thinking of it as snapshots is great, but note that it's more complex

Git branches are REALLY powerful and useful, but can be tricky to use
Please remember to write useful commit messages (helps branches)
Tip: "git checkout -b dog™ == "git branch dog; git checkout dog"
"git merge’ is really common with branching, but THINK about it
Merges try to work automatically, but you might run into conflicts
Working w/ git in a web interface vs. command line is DIFFERENT!!!

Git remotes are “remote"” copies of existing repos (collaborating = easy)
Note: "origin” typically refers to whatever (1) remote you are using
Format: "git push <remote> <local branch>:<remote branch>"

Note: need to use "git branch --set-upstream-to=origin/myBranch’
Pro tips: try to pull before you push, and commit early and often
Advice: understand full commands before you get happy w/ shortcuts
Note: ".gitconfig' is a thing! Can play w/, or steal people’s online
Trick: “git add -p°, then short command, then "git diff --cached"



FOR LATER REVIEW AND EXERCISES:

Guys, there's SO much that you can learn about git. You should DEFINITELY take
the time to get familiar with it asap. Knowing how to really use it will save you SO
much headache.

There's a ton of more info and extra practice in the Missing Semester page lecture
notes for this (especially the Resources section at the bottom). Also, | highly

recommend the ~3 LinkedIn Learning tutorials on git in Larry’'s HEP Starter Kit
playlist here:

Also, really useful talk on git's philosophy from Larry is here:

Just practice the stuff as it comes up, and everything will fall into place!!

We potentially will be going through the Git Branching tutorial here (with Jordan):

OR -- Here's a nice little repo that we can all play with harmlessly (I hope):

Note: Do whatever you want here, but be respectful and conscientious!


https://www.linkedin.com/learning/collections/6702106055167504384?trk=share_collection_url&accountId=42574436&u=42574436&success=true&authUUID=4DA9IJc1T8KSFp1q9HMChQ%3D%3D
https://www.linkedin.com/learning/collections/6702106055167504384?trk=share_collection_url&accountId=42574436&u=42574436&success=true&authUUID=4DA9IJc1T8KSFp1q9HMChQ%3D%3D
https://www.linkedin.com/learning/collections/6702106055167504384?trk=share_collection_url&accountId=42574436&u=42574436&success=true&authUUID=4DA9IJc1T8KSFp1q9HMChQ%3D%3D
https://www.linkedin.com/learning/collections/6702106055167504384?trk=share_collection_url&accountId=42574436&u=42574436&success=true&authUUID=4DA9IJc1T8KSFp1q9HMChQ%3D%3D
https://www.youtube.com/watch?v=4XpnKHJAok8
https://www.youtube.com/watch?v=4XpnKHJAok8
https://learngitbranching.js.org/
https://github.com/ldishman/git_demo
https://github.com/ldishman/git_demo

