Understanding the hadronic phase with resonance studies with ALICE at LHC Energies

Sonali Padhan (On behalf of the ALICE Collaboration) Indian Institute of Technology Bombay sonali.padhan@cern.ch

Motivation

- Resonance reconstruction method
- Results
 - Transverse momentum spectra
 - $p_{\rm T}$ integrated yield
 - Mean traverse momentum
 - Resonance to stable particle ratio
- Summary

Outline

IIT Bombay

A Large Ion Collider Experiment (ALICE) detector

Hadronic resonances are short-lived particles and their lifetimes are comparable to that of the hadronic gas created after the collisions.

Resonance production in small collisions

systems (pp and p—Pb collisions)

- \odot Serves as baseline for A—A collisions
- Study of collectivity in small collisions systems
- Role of cold nuclear effect

Motivation - Resonance as a probe of hadronic phase

Hadronic resonances are short-lived particles and their lifetimes are comparable to that of the hadronic gas created after the collisions.

Resonance production in small collisions

systems (pp and p-Pb collisions)

- \odot Serves as baseline for A-A collisions
- Study of collectivity in small collisions systems
- Role of cold nuclear effect

Motivation - Resonance as a probe of hadronic phase

Resonance production in heavy-ion collisions (Pb-Pb collisions)

- Study of rescattering and regeneration effect
 - Yield ratios of resonance to longer-lived hadrons
 - Lifetime between chemical and kinetic freeze-out
- In- medium energy loss

Nuclear modification factor for resonance

Chiral symmetry restoration

modification of width and mass

Medium effect on Resonance production

 \sim Rescattering and regeneration processes in hadronic phase affect the resonance yield and shape of $p_{\rm T}$ spectra

Sonali Padhan

Regeneration :

Pseudo-elastic scattering through resonance state \rightarrow increase in resonance yield

Rescattering : elastic scattering smears out reduction of the measured resonance yield

5	INDIAN INSTITUT	2
	JUD -	Of Incamo
Halle El		DGY BOM
	ज्ञानम् परमम् ध्येयम्	

Resonance	Lifetime (fm/c)	Decay mode	Quark content
$ ho^0$	1.3	$\pi\pi$	$\frac{u\bar{u} + d\bar{d}}{2}$
K*0(892)	4.2	$ m K\pi$	ds
K*±(892)	4.2	$K_s^0 \pi$	us, ūs
f ₀ (980)	~ 5	$\pi\pi$	
Σ(1385)	5-5.5	$\Lambda\pi$	uus, dds
Λ(1520)	12.6	pК	uds
Ξ ⁰ (1530)	21.7	$\Xi^{-}\pi$	dds
<i>φ</i> (1020)	46.4	KK	SS

Overview: Resonance production in ALICE

Particle Data Group

Resonance Reconstruction

After subtracting the event mixing background, Resonances are reconstructed via the invariant the remaining distribution is fitted with a Voigtian mass technique. Uncorrelated background is (or Breit-Wigner) function to describe the signal calculated via event mixing. $M^2 = (E_1 + E_2)^2 - \|\mathbf{p}_1 + \mathbf{p}_2\|^2$ and a polynomial for residual background.

Run2, Pb—Pb 5.02 TeV

ATHIC- 2025

IIT Bombay

Run2, pp, 13 TeV

Results

Transverse momentum spectra

• $p_{\rm T}$ integrated yield

Mean traverse momentum

Resonance to stable particle ratio

Sonali Padhan

Transverse Momentum ($p_{\rm T}$ **) Spectra**

(GeV/*c*)⁻¹

0-100%

- (production of more high $p_{\rm T}$ particles in higher multiplicity classes)
- Changes in spectral shape primarily affect low $p_{\rm T}$ particles. Sonali Padhan

Spectral shape changes and gets harder with increasing multiplicity, driven by stronger radial flow.

ATHIC- 2025

IIT Bombay

Transverse Momentum ($p_{\rm T}$ **) Spectra**

$\Xi(1530), pp, \sqrt{s} = 13 \text{ TeV}$

Spectral shape changes and gets harder with increasing multiplicity, driven by stronger radial flow. (production of more high $p_{\rm T}$ particles in higher multiplicity classes)

0–20% (×2⁴)

Changes in spectral shape primarily affect low $p_{\rm T}$ particles. **ATHIC- 2025** Sonali Padhan

Results

• $p_{\rm T}$ integrated yield

Mean traverse momentum

Sonali Padhan

- Transverse momentum spectra
- Resonance to stable particle ratio

$p_{\rm T}$ integrated yield (dN/dy) vs. $\langle dN_{\rm ch}/d\eta \rangle$

	_	-		
		1		
	_	-		
	_			
	_	1		
	_	-		
		1		
	_	-		
	_			
	_	1		
	_	4		
		1		
	_	-		
	_			
	_			
	_	-		
	_			
		1		
	_	-		
	_	1		
	_	-		
	_			
		-		
	_	_		
	_	1		
	_	-		
	-			
	_	1		
		-		
	_			
	_	1		
	_	-		
	_	1		
		-		
	_			
		1		
	_	-		
	_	_		
Т				
	1			
<u>n</u>	<u> </u>			
こし こうしん こうしん こうしん こうしん こうしん こうしん こうしん こう	1			
1<0).5	5		
			1	

Mean transverse momentum ($\langle p_T \rangle$) vs. $dN_{ch}/d\eta$

- ^o Steeper increase with multiplicity in small system i.e $\langle p_{\rm T} \rangle$ is larger in small collision system compared to heavy-ion at similar charged particle multiplicity.
- ^{\circ} Mass ordering of $\langle p_{\rm T} \rangle$ is not observed for mesonic resonances.

Sonali Padhan

^{\circ} An increasing trend of $\langle p_{\rm T} \rangle$ from low to high multiplicity is observed for all measured particles.

Resonance to stable particle yield ratio

 In most cases EPOS3 with UrQMD describes the trend qualitatively, suggesting rescattering of decay products in hadronic phase.

Sonali Padhan

Resonance : ρ^0 $K^{*0,\pm}$ $\Sigma^{*\pm}$ $\Lambda(1520)$ Ξ^{*0} Lifetime (fm/c) :1.3~4.0-4.16~5.0-5.512.621.7					
decay daughters. Suppressed Not Supp					
depend on scattering cross-section of resona					
rescattering and regeneration effects, which					
Suppression depends on the interplay between the second					
No energy dependence of the production of resonance particles from RHIC to LHC.					
Weak/no suppression for ratios involving long resonances.					
Strong suppression of the yield ratio of short- resonances to the stable/ground state hadror					

- - - -

• Suppression of $K^{*\pm}/K_s^0$ and K^*/K_s^0 with increasing multiplicity in pp collisions (suppression at ~ 7 σ level).

- -

IIT Bombay

- Suppression of $K^{*\pm}/K_{s}^{0}$ and K^{*}/K_{s}^{0} with increasing multiplicity in pp collisions (suppression at ~ 7 σ level).
- $K^{*\pm}/K_s^0$ ratio is suppressed at low p_T in high-multiplicity pp collisions compared to the low-multiplicity
- effects.
- Hint of a (short-lived) hadronic phase in pp collisions?

Sonali Padhan

In AA collisions the stronger suppression of ratio at low $p_{\rm T}$ is interpreted as a signature for rescattering

ATHIC- 2025

$f_0(980), p - Pb, @ 5.02 TeV$

Sonali Padhan

• ϕ/π : is consistent with γ_s -CSM (no rescattering).

$f_0(980), p - Pb, @ 5.02 TeV$

Sonali Padhan

• ϕ/π : is consistent with γ_s -CSM (no rescattering). $^{\circ}$ K^{*0}/ π : independent of multiplicity due to competing effect between rescattering and strangeness enhancement but model shows a small hint of enhancement probably due to the strangeness content of K^{*0} .

$f_0(980), p - Pb, @ 5.02 TeV$

Sonali Padhan

- ϕ/π : is consistent with γ_s -CSM (no rescattering).
- $^{\circ}$ K^{*0}/ π : independent of multiplicity due to competing effect between rescattering and strangeness enhancement but model shows a small hint of enhancement probably due to the strangeness content of K^{*0} .
- $\int f_0/\pi$: Significant suppression observed and is due to rescattering dominant at low $p_{\rm T}$.
 - $\sim \gamma_s$ -CSM (no rescattering effects): qualitatively describe the decreasing trend observed in data but quantitatively underestimate the suppression indicating the presence of final state hadronic interaction in data.

f_0/π , p – Pb, @ 5.02 TeV

Sonali Padhan

- Suppression of f_0/π ratio at low p_T : f_0/π is lower in HM (0-20%) than LM (60-100%) at low $p_{\rm T}$.
- Suppression attributed to rescattering effects in Pb—Pb collisions.
- This might indicate the existence of a finite hadronic phase in p-Pb collisions?

- rescattering and regeneration.
- Ardening of p_T spectra is observed from low to higher multiplicity classes suggests stronger radial flow in higher multiplicity classes.
- p_{T} integrated yield and $\langle p_{T} \rangle$ increases with increasing multiplicity reflects enhanced particle production in higher multiplicity classes.
- Yield for similar multiplicity is independent of collisions system and energy.
- $\langle p_{\rm T} \rangle$ at similar multiplicity class is $\langle p_{\rm T} \rangle$ (pp) > $\langle p_{\rm T} \rangle$ (p - Pb) > $\langle p_{\rm T} \rangle$ (Xe -

Resonances play important role in understanding the in medium phenomena like

- Xe) ~
$$\langle p_{\rm T} \rangle$$
(Pb – Pb).

- central Pb—Pb collisions due to re-scattering effect.
- Suppression of yield ratio for short-lived resonances such as K^{*0}/K_{c}^{0} at low p_{T} in high-multiplicity pp collisions compared to low-multiplicity collisions might provides evidence for hadronic phase effects.
- $^{\circ}$ No such suppression is observed for ϕ/K (both pp and Pb Pb) and $\Lambda(1520)/\Lambda$ (pp and p-Pb) in small collisions systems.
- Suppression in yield ratio might suggest potential existence of finite hadronic phase in small systems.
- Stay tuned for more exciting results with large statistics Run 3 data.

Summary

Suppression in yield ratio of $K^{*\pm}/K_s^0$, K^{*0}/K_s^0 , and $\Lambda(1520)/\Lambda$ ratio is observed for

Sonali Padhan

Thank you for your kind attention!! IOI JOUL KING AUENUO

