Chiral cross-over in Hadron Resonance Gas model

Deeptak Biswas

NISER, Bhubaneswar

ATHIC 2025 IISER Berhampur , January-2025

> For 2+1 flavor with non-zero quark mass, the chiral crossover occurs at $T_{pc} = 156.5(1.5)$ MeV. [HotQCD 2018]

For small μ_B/T_{pc} , the line can be extended as,

$$\frac{T_{\rho c}(\mu_B)}{T_{\rho c}(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_{\rho c}(0)}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_{\rho c}(0)}\right)^4$$

- ► LQCD estimates curvature coefficients $\kappa_2 = 0.012(4)$ [HotQCD 2018] and 0.0153(18) [BMW 2020], $\kappa_4 = 0$ (within variance).
- \blacktriangleright 0.015 < κ_2 < 0.02 for the freeze-out line. [HotQCD 2015]

- Hadron resonance gas model (HRG) suitably describes the experimental yield and estimates the freeze-out line. [A. Andronic et.al 2007, 2009, 2017, S.Bhattacharyya, DB et.al 2019]
- It will be interesting to provide estimations of the pseudo-critical line from the HRG.
- How far the pseudo-critical and freeze-out line match in HRG?

The order parameter is

$$\left[\langle \bar{\psi}\psi\rangle_{I,T} - \langle \bar{\psi}\psi\rangle_{I,0}\right] = \frac{\partial P}{\partial m_I}$$

- Earlier studies with HRG found a higher $T_{pc}(0) \sim 170$ MeV. [J. Jankowski et al. 2013, A. N Tawfik, N. Magdy 2015]
- We need precise determination of the hadronic σ terms, while evaluating $\partial P / \partial m_l$

$$\frac{\partial P}{\partial m_l} = -\sum_{\alpha} \frac{g_{\alpha}}{2\pi^2} \int_0^{\infty} dp \ p^2 \ n_{\alpha} \ (E_{\alpha}) \frac{1}{2E_{\alpha}} \frac{\partial M_{\alpha}^2}{\partial m_l}$$

A renormalized chiral condensate is defined in LQCD as,

$$-m_{s}\left[\langle\bar{\psi}\psi\rangle_{I,T}-\langle\bar{\psi}\psi\rangle_{I,0}\right]=-m_{s}\frac{\partial P}{\partial m_{I}}$$

A natural choice for dimensionless condensate [HotQCD 2012],

$$\Delta_{R}^{I} = d + m_{s} r_{1}^{4} \left[\langle \bar{\psi}\psi \rangle_{I,T} - \langle \bar{\psi}\psi \rangle_{I,0} \right]$$

■ Using low energy constant of $SU(2) \chi_{PT}$, $\Sigma^{1/3} = 272(5)$ MeV, $m_s = 92.2(1.0)$ MeV, and $r_1 = 0.3106$ fm, one gets d = 0.022791. [FLAG 2022],

- \blacksquare Quark mass variation of pseudoscalar mesons have been included following $\chi {\rm PT}.$
- We have done extensive compilation of the LQCD results to find $\frac{\partial M_{\alpha}}{\partial m_l}$ at a constant m_s , set at the physical value. [DB, PP, SS 2022]
- For the first time, σ terms for η , $\rho(770)$, $K^*(892)$, and η' have been calculated from LQCD data.

 $\left[\mathsf{RQCD} \text{ Bali et al. 2016, D. Guo et al. 2016, } \mathsf{RQCD} \text{ Bali et al. 2021} \right]$.

 \blacksquare Precise σ terms for all baryons and resonances have been included [PM. Copeland et al. 2023] .

$$\Delta_{R}^{\prime} = d + m_{s} r_{1}^{4} \left[\langle \bar{\psi}\psi \rangle_{I,T} - \langle \bar{\psi}\psi \rangle_{I,0} \right]$$

- In lattice Δ_R^l goes to half of its low-temperature value at T_{pc} .
- We use this fact to estimate T_{pc} from HRG model calculations.

> This improved calculation gives $T_{pc} = 161.2 \pm 1.7$ MeV at $\mu_B = 0$. [DB, S.Sharma, P.Petreczky 2022]

$$\succ \kappa_2 = 0.0203(7)$$
 and $\kappa_4 = -3(2) \times 10^{-4}$.

> Results are in agreement with LQCD estimations of $\kappa_2 = 0.016(6)$ [HotQCD 2018] and, $\kappa_4 = 0.001(7)$. > This improved calculation gives $T_{pc} = 161.2 \pm 1.7$ MeV at $\mu_B = 0$. [DB, S.Sharma, P.Petreczky 2022]

$$\succ \kappa_2 = 0.0203(7)$$
 and $\kappa_4 = -3(2) \times 10^{-4}$.

- > Results are in agreement with LQCD estimations of $\kappa_2 = 0.016(6)$ [HotQCD 2018] and, $\kappa_4 = 0.001(7)$.
- > How to extend this line at higher μ_B ?

Mean-filed repulsive HRG

The pressure for an interacting ensemble of (anti-) baryons is [P. Huovinen P. Petreczky 2018]

$$P_{int}^{B\{\bar{B}\}} = T \sum_{i \in B\{\bar{B}\}} \int g_i \frac{d^3 p}{(2\pi)^3} \ln\left[1 + e^{-\beta(E_i - \mu_{eff})}\right] + \frac{K}{2} n_{B\{\bar{B}\}}^2$$

- The effective chemical potential, $\mu_{eff} = B_i \mu_B K n_{B\{\bar{B}\}}$.
- The number densities can be solved self-consistently from:

$$n_{B\{\bar{B}\}} = \sum_{i \in B\{\bar{B}\}} \int g_i \frac{d^3 p}{(2\pi)^3} \frac{1}{e^{\beta(E_i - \mu_{eff})} + 1}$$

The total pressure is the sum of the interacting ensemble of the (anti)baryons and the non-interacting ensemble of mesons.

Fitting the parameter K

The mean-field coefficient K can be estimated by fitting the baryon susceptibilities.

HotQCD 2020

Fitting the parameter K

HotQCD 2020, WB 2018, 2023

Chiral condensate variation with μ_B

- The repulsion effectively decreases the chiral condensate.
- This effect is prominent at low temperatures.

Pseudo-critical line

- Lattice QCD results disfavor μ_B^{CEP} < 400 MeV [WB 2020, HotQCD 2019].
- This conclusion allows us to extend the cross-over line estimation at high μ_B . [DB, S. Sharma, P.Petreczky 2024]

>
$$\kappa_2 = 0.0150(2)$$
 and $\kappa_4 = 3.1(6) \times 10^{-5}$.

The estimation of κ₄ is distinctly different from zero given the estimated errors.

Effect of strangeness neutrality

- $n_5 = 0$ restricts the density of strange particles, giving higher values of T_{pc} .
- In agreement with estimations from NJL model [MSA, DB et al. 2024]
- Freeze-out line deviates from the pseudo-critical line around $\mu_B = 400$ MeV.
- Indicates a longer lifetime of hadronic phase at lower collision energies.

- ✓ We have improved the chiral description within the HRG model with precise estimations of σ terms.
- ✓ With suitable value of K the pseudo-critical line has been extended at higher μ_B .
- ✓ κ_2 and κ_4 betters and matches with LQCD for $K \neq 0$.
- ✓ Freeze-out might occur at much later time at higher μ_B .
- ✓ Strangeness neutrality increases T_{pc} → lower value of κ_2 .
- Chiral mean-field model would provide insight into the curvature coefficients and interplay with strangeness. Talk by MS Ali

Collaborators:

Peter Petreczky, Sayantan Sharma

References:

Phys.Rev.C 106, 045203 and Phys.Rev.C 109, 055206

BACKUP

Quantification of the mean-field parameter K

Quantification of the mean-field parameter K

From $SU(2) \chi_{PT}$,

$$M_{\pi}^2 = M^2 \left[1 - rac{1}{2} \zeta \ ar{l}_3 + \mathcal{O}(\zeta^2)
ight] \ , \ \zeta = rac{M^2}{16 \pi^2 F_{\pi}^2}$$

- Kaon properties are predicted well from 2+1 χ_{PT} [RBC 2014, Durr 2015] $M_K^2 = B_K(m_s)m_s \left[1 + \frac{\lambda_1(m_s) + \lambda_2(m_s)}{F^2}M^2\right]$ $M^2 = 2Bm_I, B = \Sigma/F^2$
- From LQCD the pion mass is consistent with LO result $M_{\pi}^2 \approx 2Bm_I$. [RQCD Bali et al. 2016].

Sigma terms for Heavier hadrons

$$\sigma_{\alpha} = m_{l} \frac{\partial M_{\alpha}}{\partial m_{l}}|_{m_{l} = m_{l}^{phys}} = m_{l} \langle \alpha | \bar{u}u + \bar{d}d | \alpha \rangle = M_{\pi}^{2} \frac{\partial M_{\alpha}}{\partial M_{\pi}^{2}}|_{M_{\pi} = M_{\pi}^{phys}}.$$

Ν	Λ	Σ	Ξ
44(3)(3)	31(1)(2)	25(1)(1)	15(1)(1)
Δ	Σ^*	Ξ*	Ω^{-}
29(9)(3)	18(6)(2)	10(3)(2)	5(1)(1)

The sigma terms of ground state baryons have been only recently calculated with precision. [Copeland et al. 2021] .

Strangeness chemical potential for neutrality case

Contribution of different sectors along the phase line

An alternate equation of state

The agreement at lower μ_B/T can be utilized to evaluate the isentropic trajectories and speed of sound at higher values.

Lattice results from HotQCD 2023.