Role of stopping and diffusion of baryons in BES phenomenology

Tribhuban Parida **IISER Berhampur, India**

10th Asian triangle heavy-ion conference (ATHIC)-2025 13-16 Jan. 2025

Baryon stopping related measurements at STAR and related physics interest

Baryon stopping related measurements at STAR and related physics interest

v_1 measurements at STAR and related physics interest

STAR collab., Phys. Rev. C 96, 044904 (2017) STAR collab., Phys. Rev. C 79, 034909 (2009)

BRAHMS collab., Phys.Lett. B 677, 267 – 271 (2009) BRAHMS collab., Phys. Rev. Lett. 93, 102301 (2004) *Phys*. *Rev*. *Lett*. 82, 2471 – 2475 (1999)

Splitting and antiwith

Lipei Du, Chun Shen, Charles Gale, Sangyong Jeon, PRC, 108, 4 (2023)

Feature	Physics	status
between proton proton increases beam energy	Initial baryon stopping	Hydro model only proton Not Antiproton

$$v_1(y)]_{Net-p} = \frac{\frac{dN^p}{dy}[v_1(y)]_p - \frac{dN^{\bar{p}}}{dy}[v_1(y)]_{\bar{p}}}{\frac{dN^{p-\bar{p}}}{dy}}$$

Feature	Physics	status
change of proton and e sign change of net proton	Initial baryon stopping and Signature of 1st order phase transition	No model cap

PRX (2024) 14, 011028 (STAR collaboration)

Jre	Physics	status
e at larger ality	Signature of EM field ?	No model captures

Kharzeev, PLB (1996)

Single + double junction stopping motivated initial baryon deposition

 $n_B \propto (1 - \omega)N_{\rm p}$ articipants + $\omega N_{\rm binary collisions}$

Our model

Denicol et. al., Phys. Rev. C 98, 034916 (2018)

Hydro with baryon diffusion

Diffusion

Fick's law : $j_B^{\mu} = \kappa_B \nabla^{\mu} \left(n_B \right)$

 $\kappa_B = \frac{C_B}{T} n_B \left[\frac{1}{3} \coth\left(\frac{\mu_B}{T}\right) - \frac{n_B T}{\epsilon + p} \right]$

Diffusion current

Diffusion coefficient

9

Results

Results

TP and Sandeep Chatterjee arxiv: 2211.15729 TP and Sandeep Chatterjee arxiv: 2211.15659

Results

 $[v_{1}(y)]_{Net-p} = \frac{\frac{dN^{p}}{dy}[v_{1}(y)]_{p} - \frac{dN^{\bar{p}}}{dy}[v_{1}(y)]_{\bar{p}}}{\frac{dN^{p-\bar{p}}}{dy}}$

Results

TP and Sandeep Chatterjee arxiv: 2211.15729 TP and Sandeep Chatterjee arxiv: 2211.15659

PRX (2024) 14, 011028 (STAR collaboration)

Results

14

PRX (2024) 14, 011028 (STAR collaboration) TP and Sandeep Chatterjee arxiv: 2305.08806

Results

What's in our model to capture this feature of the data

TP and Sandeep Chatterjee arxiv: 2305.08806 PRX (2024) 14, 011028 (STAR collaboration)

Asymmetric baryon gradient along +x to -x

$$i_B^{\mu} = \kappa_B \nabla^{\mu} \left(n_B \right)$$

STAR collab. SQM, Strasbourg, 2024

Results

17

STAR collab. SQM, Strasbourg, 2024

Results

TP, Sandeep Chatterjee and Subhash Singha In preparation ...

What's in our model to capture this feature of the data

Contribution of EM field in directed flow splitting

 B_y field generated at (x_T, ϕ) by a particle of charge Q moving with rapidity y_b and present at transverse position (x'_T, ϕ') is : $eB_y = Q\alpha \sinh y_b (x_T \cos \phi - x'_T \cos \phi') e^A \Delta^{-3/2} (1 + \sigma/2 \sinh y_b \sqrt{\Delta})$

Lorentz transform $\overrightarrow{v}_{drift}$ to Lab frame

Modification of fluid velocity in Cooper Frye formula at freezeout hypersurface

Contribution of EM field in directed flow splitting

Non-zero baryon diffusion

TP, Sandeep Chatterjee and Subhash Singha In preparation ...

Contribution of EM field in directed flow splitting

Non-zero baryon diffusion

W EN field

In preparation ...

Successful baryon phenomenology framework.

diffusion coefficient which is consistent with experimental data can provide a non-critical baryonic baseline that is crucial in the ongoing searches for the

- QCD critical point and
- signatures of EM field.

- Our initial baryon stopping model, and the baryon

Tilted fireball

A participant nucleon deposits more energy along it's direction of motion. $\epsilon(x, y, \eta_s) = \epsilon_0 \left(N_+(x, y) f_+(\eta_s) + N_-(x, y) f_-(\eta_s) \right) (1 - \alpha) + N_{coll}(x, y) \epsilon_{\eta_s}(\eta_s) \alpha \right)$

$$f_{+}(\eta_{s}) = \frac{\eta_{s} + \eta_{m}}{2\eta_{m}} \epsilon_{\eta_{s}}(\eta_{s}) \quad (-\eta_{m} < \eta_{s} < \eta_{m})$$

Model of the initial baryon profile

$$n_B(x, y, \eta_s) = N_B \left[(1 - \omega) \left(N_+(x, y) f_+^B(\eta_s) \right) \right]$$
$$\int \tau_0 \, d\eta \, dx \, dy \, \eta$$

- Unlike participant sources, the binary collision ulletsources carry no rapidity bias
- In microscopic models rapidity loss depends on number of binary collisions.

 $+N_{-}(x,y)f_{-}^{B}(\eta_{s})) + \omega N_{coll}(x,y)(f_{+}^{B}(\eta_{s}) + f_{-}^{B}(\eta_{s}))$

$N_B(x, y, \eta_s) = N_{part} = (N_+ + N_-)$

Baryon junction picture : single junction stopping with forward-backward asymmetric profile (similar to participant deposition in our model), double junction stopping has no rapidity bias (similar to Ncoll deposition)

Simulation framework

Glauber model for initial energy and baryon deposition

MUSIC Hydrodynamic evolution

 $\partial_{\mu}T^{\mu\nu}=0$

 $\partial_{\mu}J^{\mu}_{B}=0$

-Tμ Bli

 $\Delta^{\mu\nu} D q_{\nu} = -\frac{1}{\tau_q} \left(q^{\mu} - \kappa_B \nabla^{\mu} \frac{\mu_B}{T} \right)$

Baryon diffusion coefficient

Denicol et. al., Phys. Rev. C 98, 034916 (2018)

Simulation framework

A. Monnai, C. Shen and B. Schenke, Phys. Rev. C 100, 024907 (2019)

Starting hydro at a constant τ_0 $u^{\mu}(\tau_0) = \tau_0(\cosh \eta_s, 0, 0, \sinh \eta_s)$

 $C_{\eta} = \frac{\eta T}{\epsilon + P} = 0.08$ $\zeta = 0$ $C_{B} = 1$ (Baryon diffusion coefficient)

 $\epsilon_f = 0.26 \text{ GeV/fm}^3$

Simulation results

our model parameters are tuned to capture the above observables simultaneously

$\eta_m = 0.8, \ \omega = 0.15$

