Searching for the Turn-Off Signature of the QGP via Anisotropic Flow Measurements at RHIC

Prabhupada Dixit (for the STAR collaboration)

Indian Institute of Science Education and Research (IISER) Berhampur

10th Asian Triangle Heavy-Ion Conference - ATHIC 2025

1

QCD phase diagram

Goals of the STAR experiment

- Search for the critical point.
- → Search for the 1st order phase transition.
- → Search for the turn-off signature of QGP.
- Study the disappearance of partonic collectivity via flow measurements at various beam energies (proxy for baryon chemical potential)

Introduction

P. Dixit

Collective expansion of the medium: **Flow**

Elliptic flow: Driven by initial spatial anisotropy. **Triangular flow:** Driven by the fluctuation in the position of the participant nucleons.

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left[1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(\phi - \Psi_2) + 2v_3 \cos(\phi - \Psi_3) + \dots \right]_{\text{Phys. Rev. C 58, 1671 (1998)}}$$

Introduction

Constituent quark scaling in v2: Signature of partonic collectivity

Phys. Rev. Lett. 116 (2016) 62301

$$v_2^H(p_T) = n_q \times v_2^q(p_T/n_q)$$

NCQ scaling at 200 GeV:

- Signature of partonic collectivity in the produced medium.
- Quark recombination model of hadronization.

Does this scaling persist at lower collision energies? If so, up to what minimum energy does it remain valid? 3

STAR detector

Particle identification

Major upgrades in BES-II:

- iTPC upgrade: Larger η coverage (-1.5 < |η| < 1.5) and better dE/dx and momentum resolution.
- → Dedicated Event Plane Detector (EPD) (2.1 < $|\eta|$ < 5.1)
- → eToF: PID at larger rapidity (1.1 < η < 1.5)

Results: NCQ scaling in v_2 at \sqrt{s_{NN}} = 19.6 \text{ GeV} P. Dixit

The NCQ scaling holds within 20% for particles and within 10% for antiparticles Better scaling for antiparticles: might be the effect of transported quarks in particles. **Signature of partonic degrees of freedom in the produced medium.**

Results: NCQ scaling in v_3 at \sqrt{s_{NN}} = 19.6 \text{ GeV} P. Dixit

The NCQ scaling for v_3 holds within 30% for particles and within 15% for antiparticles Better scaling for antiparticles.

Results: Energy dependence of v_2 **at** $\sqrt{s_{NN}} = 3.0 - 4.5$ GeV

P. Dixit

- → Change of sign of v₂ from positive to negative below √s_{NN} < 3.5 GeV: spectator shadowing effect</p>
- → JAM + baryonic mean field describe the 3.2 GeV data while underestimate 4.5 GeV data.

Results: Energy dependence of NCQ scaling at √s_{NN} = 3.0 – 4.5 GeV

P. Dixit

- → Measurements of v₂ and v₃ for identified hadrons are presented in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV. Additionally, these measurements are extended to high baryon density region in Au+Au collisions using fixed target experiments at $\sqrt{s_{NN}}$ = 3.0-4.5 GeV.
- → NCQ scaling holds for v_2 and v_3 at $\sqrt{s_{NN}}$ = 19.6 GeV indicating the presence of partonic degrees of freedom.
- → NCQ scaling completely disappears at $\sqrt{s_{NN}}$ < 3.5 GeV indicating the dominance of hadronic interaction in the produced medium at these lower energy regimes.

Thank you...

Results: NCQ scaling in v₂ at 14.6 GeV

P. Dixit

The NCQ scaling holds within 25% for particles and within 15% for antiparticles.