Characterization of flavor dependence of Chiral Magnetic Effect with multiple correlators

Somdeep Dey

School of Physics University of Hyderabad

The 10th Asian Triangle Heavy-Ion Conference ATHIC - 2025

・ 同下 ・ ヨト・ ・ ヨト・

Chiral Magnetic Effect

- Chiral Magnetic Effect (CME) is a transport phenomenon arising from the interaction between quantum anomalies and strong magnetic fields in the relativistic nuclear collisions.
- CME in Quantum Chromodynamics a generation of electric current along an extremly strong magnetic field that is induced by the chirality imbalance of the quarks.

Figure: Chiral Magnetic Effect

• Chirality imbalance + Magnetic Field \rightarrow Current

Why flavor dependency?

The current induced along the magnetic field is given by,

$$J_{CME} = N_C (\sum_f Q_f^2) \frac{e^2}{2\pi^2} \mu_5 \vec{B}$$

- $N_C \longrightarrow 3$ (color number), $Q_f \longrightarrow$ Charge of quark flavors
- $\vec{B} \longrightarrow$ Magnetic field, $\mu_5 \longrightarrow$ Chiral chemical potential
- CME carries information about the quark number(N_f). Since CME current is depend on the charge of quark flavors.

$$J_{CME} pprox rac{2}{3} K(N_f = 3)$$

 $J_{CME} pprox rac{5}{9} K(N_f = 2)$ (2)
where, $K = rac{N_c \mu_5 \vec{B}}{2\pi^2} e^2$.

不同 とう ヨ とう ヨ とう

١

(1)

Gamma Correlator

- Any observable designed to detect the CME will invlove measuring the angles of the emitted particles. This could be measured by two particle azimuthal correlations.
- The observable Gamma correlator (γ) referes to the correlation between the azimuthal angles of two charge particles produced in RHIC.

$$\gamma = <\cos\left(\phi_{\alpha} + \phi_{\beta} - 2\psi_{RP}\right) > \tag{3}$$

 $\phi \longrightarrow$ azimuthal angle of charge particles $\psi_{RP} \longrightarrow$ reaction plane angle α and β are the combination of charges(+ +,- +,- +,- -)

$R_{\psi_2}(\Delta S)$ Correlator

 $R_{\psi_2}(\Delta S)$ Correlator designed to supress or separate back-ground contribution from genuine CME-driven charge separation.

$$R_{\psi_2}(\Delta S) = \frac{C_{\psi_2}(\Delta S)}{C_{\psi_2}^{\perp}(\Delta S)}$$
(4)

Where, $C_{\psi_2}(\Delta S)$ and $C_{\psi_2}^{\perp}(\Delta S)$ are the correlation functions designed to quantify charge-separation ΔS .

$$C_{\psi_{2}}(\Delta S) = \frac{N(\Delta S)}{N(\Delta S_{mix})} \quad (5) \quad C_{\psi_{2}}^{\perp}(\Delta S) = \frac{N(\Delta S^{\perp})}{N(\Delta S_{mix}^{\perp})} \quad (8)$$

$$\Delta S = \langle S_{p} \rangle - \langle S_{n} \rangle \quad (6) \quad \Delta S^{\perp} = \langle S_{p}^{\perp} \rangle - \langle S_{n}^{\perp} \rangle \quad (9)$$

$$\Delta S_{mix} = \langle S_{p_{mix}} \rangle - \langle S_{n_{mix}} \rangle \quad \Delta S_{mix}^{\perp} = \langle S_{p_{mix}}^{\perp} \rangle - \langle S_{n_{mix}}^{\perp} \rangle \quad (10)$$

$$\langle S_{p} \rangle = \frac{1}{p} \sum_{p} \sin(\phi_{p} - \psi_{2}) \quad \langle S_{p}^{\perp} \rangle = \frac{1}{p} \sum_{p} \sin(\phi_{p} - \psi_{2} - \frac{\pi}{2})$$

$$\langle S_{n} \rangle = \frac{1}{n} \sum_{n} \sin(\phi_{n} - \psi_{2}) \quad \langle S_{n}^{\perp} \rangle = \frac{1}{n} \sum_{n} \sin(\phi_{n} - \psi_{2} - \frac{\pi}{2})$$

くロ と く 戸 と く 三 と 一

- $C_{\psi_2}(\Delta S)$ measures both CME and back-ground driven charge separation. $C_{\psi_2}^{\perp}(\Delta S)$ measures only background driven charge separation.
- $N(\Delta S) \longrightarrow$ distribution of ΔS over events relative to ψ_2 .
- p and n are number of positive and negative charge particles respectively, $\phi \rightarrow azimuthal$ angle of charged particles; $\psi_2 \rightarrow$ second order event plane angle.
- For $C_{\psi_2}^{\perp}(\Delta S)$ calculation $\psi_2 \rightarrow \psi_2 + \frac{\pi}{2}$.
- we have used Particle Mixing Method to calculate ΔS_{mix} and select same number of particles irrespective of their charges.
- The correlator R_{ψ2}(ΔS) gives a measure of charge separation || to the B
 [´](⊥ ψ₂) relative to the charge separation ⊥ to B
 [´](|| ψ₂).
- $R_{\psi_2}(\Delta S)$ is dominated by CME-driven charge separation result in **concave-shaped distributions** having width that reflects the magnitude of charge separation.
- The stronger the CME driven charge separation narrower the $R_{\psi_2}(\Delta S)$ distribution.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Introducing CME in AMPT

 A MultiPhase Transport Model (AMPT) has been extensively used to study RHIC, which provides individual particle information including position, momentum, energy etc.

• We have introduced CME in the AMPT model by switch p_y values for a fraction(f) of the downward $u(\bar{d})$ moving quarks with those of the upward moving $\bar{u}(d)$ quarks and introduce into the initial partonic states.

where,
$$f = \frac{N_{\uparrow(\downarrow)}^{+(-)} - N_{\downarrow(\uparrow)}^{+(-)}}{N_{\uparrow(\downarrow)}^{+(-)} + N_{\downarrow(\uparrow)}^{+(-)}}$$

N \rightarrow number of a given of quarks; + and - \rightarrow positive and negative charges; \uparrow and \downarrow are the moving directions of quarks along the y axis respectively.

Effect of flavor dependence of CME for γ and $R_{\psi_2}(\Delta S)$ Correlators

1.4

R_{ψ2}(ΔS)

0.0

•

Figure: Gamma correlation vs P_T plot for Au-Au collision at 200 Gev for (30 - 50)% centrality

Figure: R_{ψ_2} vs ΔS plot for Au-Au collsion at 200 Gev for (30 - 50)% centrality

٨S

-0.05 0.00

, ¹

flv=3

flv=2

Classification Model with ML Algorithm

 A classification model in machine learning is a predictive modeling approach used to categorize data into predefined classes or labels by learning patterns from labeled training data.

- Here we want to classify 2 flavor and 3 flavor CME.
- To train our model we need to find out best suited distributions.
- For that we have calculated correlation matrix for both flavors and distinguish them by observing their coefficients.
- we choose different observales like P_T, dN_{ch}/dη, dN_{ch}/dφ, d²N_{ch}/dP_Tdη, dE_T/dη, V₂ as variables to construct correlation matrix.

Somdeep Dey (University of Hyderabad)

ATHIC - 2025

Result:

 From Correlation Matrix we have figured out *dN_{ch}/dη* vs *P_T*, *dN_{ch}/dφ* vs *P_T*,*dE_T/dη* vs *P_T*, these three distributions are showing some differences and chosen as input to train our model.

イロト イポト イヨト イヨト

- At first we have introduced CME in AMPT.
- After that we have studied how γ and R_{ψ2}(ΔS) correlators characterizes 2 flavor and 3 flavor CME.
- Then we have calculated correlation matrix with differnt observables to figure out best suited distributions to distinguish 2 flavor and 3 flavor CME.
- We have used those distributions as an input to train our neural network model(CNN) and make a prediction how accurately it can classify 2 flavor and 3 flavor CME.

同下 イヨト イヨト

- Ling Huang, Chun-Wang Ma and Guo-Liang Ma (PHYSICAL REVIEW C 97, 034909 (2018))
- L. Huang, C-W Ma and G-L Ma, Physical Review C 97 034909 (2018)
- N. Magdy et. al. Physical Review C 97 061901(R) (2018)
- Chiral Magnetic Effect(Phys. Rev. D 78, 074033 2008)
- Journal of Physics: Conference Series 612(2015) 012044
- Detecting the chiral magnetic effect via deep learning(Physical Review C 106,L051901(2022))
- Zhi-Lei She et al. Computer Physics Communications 274 108289 (2022)

3

イロト イポト イヨト イヨト

Acknowledgement

- We acknowledge IoE research grant No. UH/RITE/PHY/SS/ IoE-RC522020/01 for financial support.
- I have worked in collaboration with Dr. Abhisek Saha and Prof. Soma Sanyal in this project.

THANK YOU!

伺下 イヨト イヨト