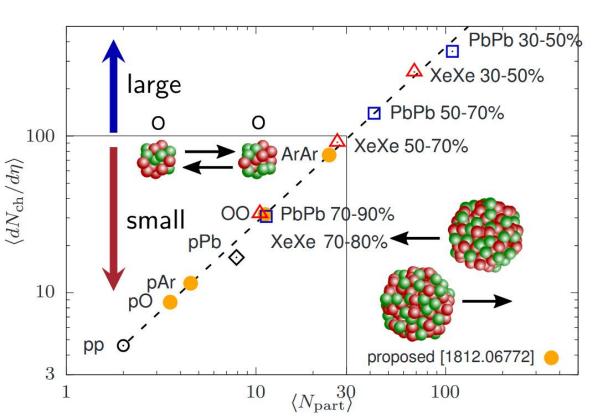
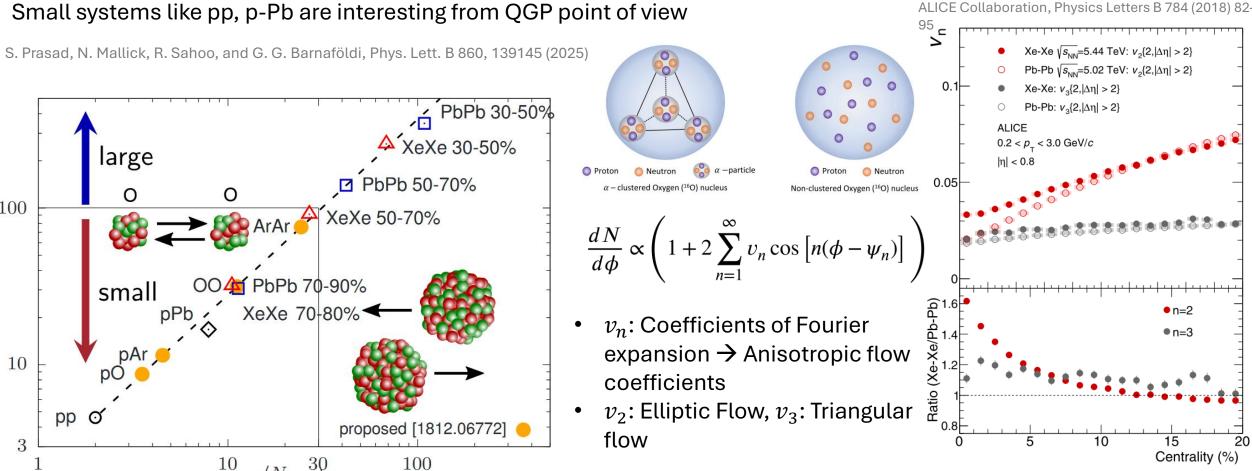
Exploring the effects of α-clustered structure of ¹⁶O nuclei in ¹⁶O-¹⁶O collisions at the LHC within a CGC + Hydro framework

2025

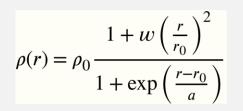


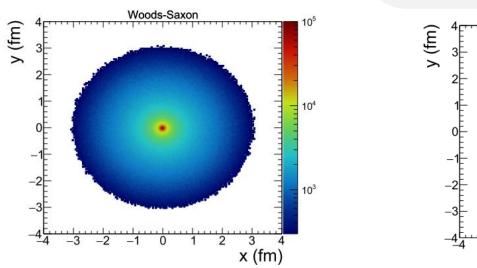

Suraj Prasad Indian Institute of Technology Indore, India

Based On: S. Prasad, N. Mallick, R. Sahoo, and G. G. Barnaföldi, Phys. Lett. B 860, 139145 (2025)

Introduction

- Quark-gluon plasma (QGP) is a thermalised and deconfined medium of partons exhibiting collective behaviour
- Recently, QGP-like signatures in high multiplicity pp and p-Pb collisions have been observed
- Small systems like pp, p-Pb are interesting from QGP point of view





Nuclear structure of Oxygen

Woods-Saxon nuclear density

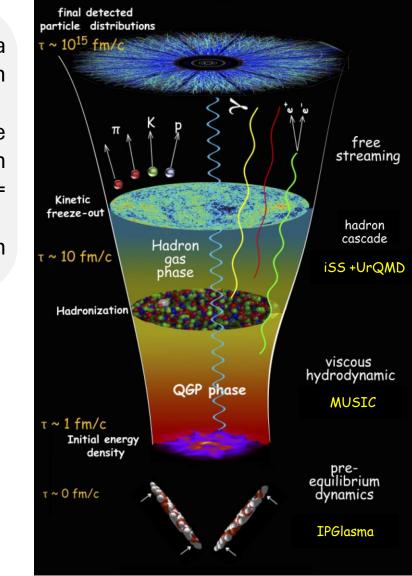
- Mean radius, $r_0 = 2.608 \, \text{fm}$
- Nuclear skin depth, a = 0.513 fm
- Deformation parameter, w = -0.051

S. Prasad, N. Mallick, R. Sahoo, and G. G. Barnaföldi, Phys. Lett. B 860, 139145 (2025)

α -cluster structure

- Four α-particles at the corners of a regular tetrahedron of side length 3.42 fm
- Inside the α -particles, (2p, 2n) are distributed following a Woods-Saxon nuclear profile (r_0 = 0.964 fm, w = 0.517 and a = 0.322 fm)
- The regular tetrahedron is rotated in 3D to make each nucleus unique

 α -cluster


10⁴

10³

3

x (fm)

2



15-01-2025

ATHIC 2025 | Suraj Prasad

-2

Results: Eccentricity and Triangularity

The eccentricity and triangularity can quantify the degree of elliptic and triangular nature of participant overlap region

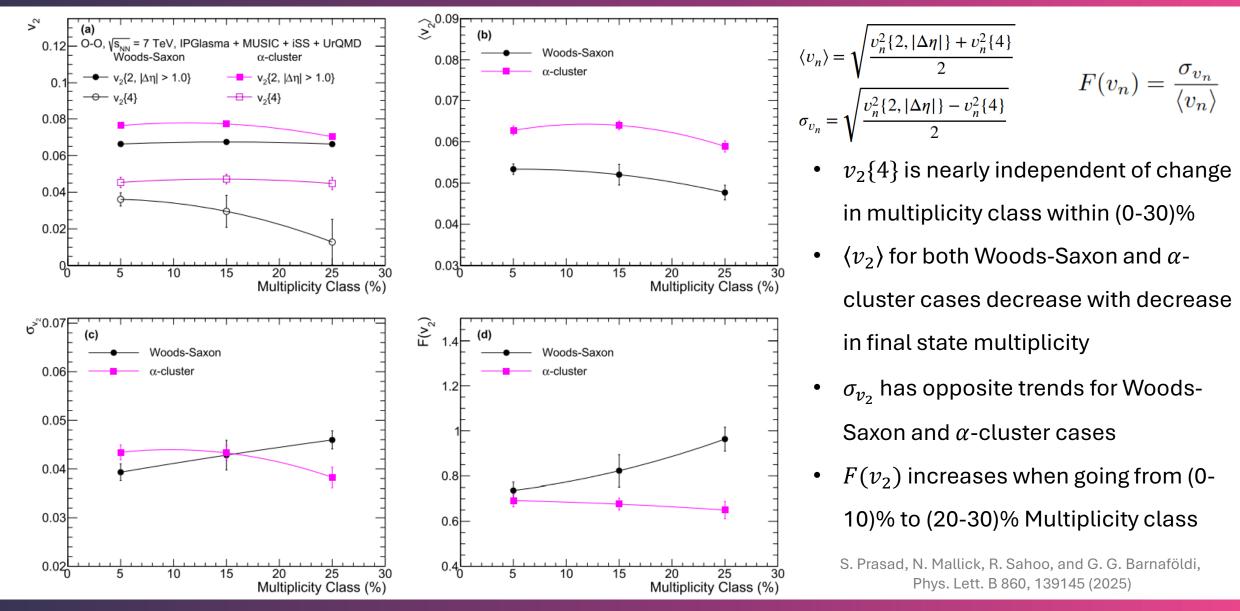
$$\epsilon_n = \frac{\sqrt{\left\langle r^n \cos(n\phi_{\text{part}})\right\rangle^2 + \left\langle r^n \sin(n\phi_{\text{part}})\right\rangle^2}}{\left\langle r^n \right\rangle}$$

- Eccentricity: initial spatial anisotropy based on geometry of the overlap region
- Triangularity: spatial anisotropy generated due to density fluctuations
- For α-cluster case, ε₃ decreases with a decrease in final state multiplicity → Opposite trend as compared to Woods-Saxon
- Sharp fall in ϵ_3/ϵ_2 from (0-10)% to (10-20)% multiplicity class S. Prasad, N. Mallick, R. Sahoo, and G. G. Barnaföldi, Phys. Lett. B 860, 139145 (2025)

15-01-2025

ATHIC 2025 | Suraj Prasad

Results: Elliptic and Triangular Flow


- $v_n{2} = \sqrt{c_n{2}}$ v₃{2}/v₂{2} O-O, √S_{NN} _ = 7 TeV, |η| < 0.8, |Δη| > 1.0 O-O, $\sqrt{s_{_{NN}}} = 7$ TeV, $|\eta| < 0.8$, $|\Delta \eta| > 1.0$ PGlasma + MUSIC + iSS + UrQMD IPGlasma + MUSIC + iSS + UrQMD 0.7 Woods-Saxon — n = 2, α-cluster ---- Woods-Saxon Q-cumulant method is used n = 3, Woods-Saxon --- n = 3, α -cluster 0.08 0.6 Both v_2 and v_3 decreases 0.5 0.06 with decrease in multiplicity 0.4 v_2 for α -cluster is greater than 0.04 0.3 Woods-Saxon except for (50-0.02 0.2 90)% multiplicity class For (0-10)% Mult. Class, v_3 for <u>Woods-Saxon</u> ∞-cluster 1.5 α -cluster is greater than 0.5Woods-Saxon 60 Multiplicity Class (%) Multiplicity Class (%)
- For (0-10)% Multiplicity class, v_3/v_2 is higher for α -cluster case as compared to Woods-Saxon, after which Woods-Saxon leads the values
- Similar to ϵ_3/ϵ_2 , we find a sharp drop in the value of v_3/v_2 from (0-10)% to (10-20)% multiplicity class

S. Prasad, N. Mallick, R. Sahoo, and G. G. Barnaföldi, Phys. Lett. B 860, 139145 (2025)

15-01-2025

ATHIC 2025 | Suraj Prasad

Results: Flow Fluctuations

15-01-2025

ATHIC 2025 | Suraj Prasad

Summary

- In this study, we have investigated the effect of the presence of α -clustered structure on final state anisotropic flow and their fluctuations in O-O collisions
- This study uses a hybrid of IPGlasma + MUSIC + iSS + UrQMD model
- One finds both elliptic and triangular flow values are larger for the α-cluster case as compared to a Woods-Saxon profile
- Observables related to fluctuations can be more suitable to probe the initial α -cluster structure in O-O collisions at LHC
- Although the study of nuclear density profile is a matter of low energy nuclear physics, the present study motivates us to look for signatures of clustered nuclear structure in the high energy collider experiments

Thank You

