Medium anisotropy in p-O and p-C collisions at the LHC with

exotic a-clustered nuclear density profiles

Based on: arXiv:2407.03823

Aswathy Menon K R

Indian Institute of Technology Indore, India Email : <u>Aswathy.Menon@cern.ch</u>

Collaborators: Suraj Prasad, Neelkamal Mallick, Raghunath Sahoo

1. Motivation

- 2. a-clusters in ¹⁶O and ¹²C nuclei
- 3. Results
- 4. Summary

Motivation

1. Motivation

2. α -clusters in ¹⁶O and ¹²C nuclei

- 3. Results
- 4. Summary

a-clusters in O and C nuclei

SUM of GAUSSIANS

- Nuclear charge densities (NCDs) are fitted by a Sum of two Gaussians: $\rho(r) = C_1 e^{-a_1 r^2} + C_2 e^{-a_2 r^2}$
- Model-independent method via which experimental nuclear charge distributions are approximated

Shukla, S.

Aberg and S.

K. Patra

- 1. Motivation
- 2. a-clusters in ¹⁶O and ¹²C nuclei
- 3. Results
- 4. Summary

Eccentricity & Triangularity

Same collision species

Initial spatial anisotropies, such as, eccentricity (ϵ_2), triangularity (ϵ_3), etc., are quantified as: $\epsilon_n =$

Both ϵ_2 and ϵ_2 may emerge due density fluctuations than from geometrical asymmetry in small collision systems Trends of $\langle \varepsilon_n \rangle$ and $\langle \varepsilon_3 \rangle / \langle \varepsilon_2 \rangle$ for α -cluster profiles are closely

 $\langle r^n \cos(n\phi_{\text{part}}) \rangle^2$

 $\langle r^n \sin(n\phi_{\text{part}}) \rangle^2$

Different nuclear density profiles Different initial anisotropies

Elliptic flow and Triangular flow

Summary

For the first time, systematic study on the effects of initial nuclear density profiles (α -cluster nuclear geometry especially) on final state flow coefficients through pO and pC collisions at the LHC energy is reported

- $\langle e_n \rangle$ shows significant dependence on collision centrality, initial nuclear geometry and collision system
- *a*-cluster profile maintains similar unique qualitative behavior throughout the collision systems, pC, pO and OO
- Fluctuation dominated final state v_2 {2} shows small collision centrality dependence compared to corresponding v_3 {2} \Rightarrow initial geometry cannot be effectively carried to final state; coalescence picture is not effective due to small particle density in final state

Though theorized in **low energy nuclear physics**, we look for the signs and effects of α-clustered nuclear density profile, via **the lens of high energy physics**

p-C and p-O collision simulations are performed, keeping in mind the ongoing LHC runs and small collisions systems in mind

... WAITING FOR THE pO and OO DATA FROM THE LHC RUN 3...

Back-up

Anisotropic Flow Estimation

- In non-central collisions, **spatial asymmetry** along different directions leads to **hierarchy of pressure gradients**
- Strong pressure gradients convert **initial spatial anisotropy** to final-state azimuthal **momentum space anisotropy**
- Anisotropic transverse expansion/**anisotropic flow** is quantified via coefficients of Fourier expansion of the azimuthal distribution of final state particles: $\frac{dN}{d\phi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi \psi_n)] \right) where \quad v_n = \langle \cos[n(\phi \psi_n)] \rangle$

is the **n**th order anisotropic flow coefficient

- In this study, estimation of v_n is done by **two-particle Q-cumulant method**
- Pseudorapidity gap in the sub-events helps in suppressing non-flow contributions

