

Proton Intermittency analysis in Au + Au Collisions: Exploring Critical Behavior in the FAIR Energy Range

Presenter : Anjali Sharma¹

Collaborators : Omveer Singh², Supriya Das¹

¹ Bose Institute, Kolkata, India; ² Goethe- Universität, Frankfurt am Main

Anjali Sharma

10th Asian Triangle Heavy-Ion Conference (ATHIC 2025)

Motivation

The Critical Point (CP)

- **Definition**:
 - A hypothesized endpoint of the first-order phase transition line between quark-gluon plasma (QGP) and hadronic matter (HM) in the (T, μ_B) plane.
 - Exhibits properties like scale-invariant correlations.
- Significance:
 - Serves as a bridge between two distinct phases of matter.
 - Characterized by fluctuations in thermodynamic quantities (e.g., temperature and baryonic chemical potential).

Intermittency:

- Random, non-uniform deviations from regular behavior observed in high-energy physics.
- Importance:
 - Critical for identifying scale-invariant fluctuations.
 - Probes QCD Critical Point using SCALED FACTORIAL MOMEMTS (SFM).

Concept of Intermittency : Intermittency refers to the uneven and highly variable distribution of entities within a system, observed by subdividing it into smaller cells of same size while keeping the total size and number of entities constant

Motivation

 $\overbrace{}^{\delta}$

r-order factorial moment :

$$f_r(M) = \frac{\left[\frac{1}{M}\sum_{i=1}^M n_i^r\right]}{\left[\frac{1}{M}\sum_{i=1}^M n_i\right]^r} = M^{r-1}N^{-r}\sum_{i=1}^M n_i^r$$

where M is no. of cells; N is total no. of particles and n_i is no. of particles in ith cell.

CASE 2: Extreme fluctuation (all particles in one cell) δ $f_r(M) = M^{r-1}$

It is intermittent behavior if In(f_r(M)) varies linearly with In(δ)

Slide inspiration : Slides of Valeria Zelina Reyna Ortiz in 24th ZIMA NYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS Budapest, Hungary - December 3, 2024

Time Evolution as modeled in UrQMD

VItra-relativistic Quantum Molecular Dynamics Model: A Microscopic hybrid Transport model for simulating the full space-time evolution of heavy-ion collisions.

***** Key Scientific Features :

- Microscopic Framework: Simulates hadron-hadron, hadron-string, and string-string interactions based on established crosssections.
- * Phase Transition Insights: Enables exploration of the Quark-Gluon Plasma (QGP) and critical phenomena.
- Energy Range: Effective across $\sqrt{s} = 2$ GeV to 200 GeV, bridging RHIC, LHC, and FAIR regimes.

For this analysis Chiral+HG EoS is used :

- Chiral Symmetry Restoration: Models the restoration of chiral symmetry at high temperatures/densities, affecting hadron masses and interactions, critical for studying the QCD phase diagram.
- Unified EoS: Combines chiral effective field theory for the hadronic phase with lattice QCD inputs for the QGP phase, enabling smooth transitions (crossover or first-order) between hadronic matter and the QGP.
- Applications: Critical for investigating QGP signals, collective flow (v₂), and locating the critical point in heavy-ion collision experiments (e.g., RHIC, FAIR).

Methodology

Scaled factorial moments

Horizontal averaging: Calculates the moments for each event and then averages them.

Vertical averaging: Calculates the moments for a particular bin in all events and then averages them over all bins.

Present analysis is done with horizontal averaging method :

$$\langle F_q \rangle = \frac{1}{N} \sum_{j=1}^N M^{q-1} \sum_{i=1}^M \frac{n_{i,j}(n_{i,j}-1) \dots (n_{i,j}-q+1)}{\langle n \rangle^q}$$

where, N is total no. of events, M is no. of bins, $n_{i,j}$ is no. of particles of ith bin in jth event, $\langle n \rangle$ is average no. of particles in entire phase space.

Any intermittent pattern can be confirmed by examining the power-law relationship between these moments and the number of bins.

$$\langle F_q \rangle \propto M^{\alpha_q}$$

The linear relationship between $ln\langle F_q \rangle$ and ln M indicates that the SFMs exhibit power-law scaling behavior, which predicts an intermittent pattern in non-statistical multiparticle production.

$$D_q = \frac{\alpha_q}{q-1}$$

Anomalous fractal dimensions (D_q):

- ✦ Sensitive to the nature of phase transitions.
- ◆ 2^{nd} -order phase transition: Indicated if intermittency occurs with D_q independent of q.
- Cascading process: Anticipated if D_q shows a roughly linear dependence on q.

Previous Results

Eur. Phys. J. A 59 (2023) 4, 92

UrQMD-hydro simulations with the Bag model EoS indicate enhanced particle production compared to other EoSs, and the multifractal nature of emission spectra in Au+Au collisions at FAIR energies (2A–12A GeV) suggests a cascading particle production process with intermittent patterns observed in 1D (η , φ) and 2D (η - φ) spaces.

Why Proton now ????

- Protons act as proxies for net-baryon density, reflecting critical fluctuations tied to the chiral condensate.
- Proton detection is experimentally feasible and provides measurable scaling behavior near the critical point.
- Analyzing proton fluctuations offers key insights into QCD phase transitions and the critical point.

For present Analysis : 0-5% central 50K events of Au+Au at CBM energies (2, 4, 6, 8, 10 and 12 A GeV)

Results : $\chi\{\eta\}$ space

- The linear dependence of $\ln \langle F_q \rangle$ on $\ln M$ shows the SFMs follow the power-law scaling behavior that predict an intermittent pattern in non-statistical multiparticle production.
- The intermittency index, α_q , shows an increasing trend with different orders of moments for all energies.
- \odot A significant q dependence of D_q suggests particle production via a self-similar cascade process and as the energy increases D_q increases.

Results : $\chi{\phi}$ space

- The power-law scaling behavior is shown similar to $\chi\{\eta\}$ phase space but with increased q scaling is not smooth.
- The intermittency index, α_q , also shows an increasing trend with different q for all energies but a dip around 10 AGeV.
- \odot Again, significant q dependence of D_q suggests particle production via a self-similar cascade process.

Results : $\chi\{\eta - \phi\}$ space

- The plots for the combined $\eta \phi$ space exhibit a linear relationship of $\ln\langle Fq \rangle$ with $\ln M$, similar to 1D spaces. This confirms that SFMs follow power-law scaling even in 2D, indicating intermittent patterns in particle production.
- The trend of α_q increasing with q is consistent, signifying stronger scale-invariant fluctuations in 2D compared to 1D spaces.
- The significant variation in D_q with q indicates a more complex multifractal behavior in η - ϕ space. This aligns with the idea of particle production through a self-similar cascade process.

Summary

The study utilized UrQMD-hydro simulations with Chiral + HG EoS to analyze proton intermittency in Au+Au collisions at FAIR energies (2A–12A GeV).

Constitution Observed results in 1D (η or ϕ) and 2D (η - ϕ) spaces revealed:

- Power-law scaling behavior of scaled factorial moments ($\langle F_q \rangle$).
- Increasing intermittency index (α_q) across different moment orders.
- Multifractal emission spectra characterized by variations in anomalous fractal dimensions (D_q).

These findings suggest particle production via a cascading process, confirming intermittent patterns.

Future Outlook

Increasing the Statistics: Expand the analysis by incorporating larger datasets to ensure statistical reliability and refine observed trends. **Incorporating Additional Equations of State (EoS)**: Extend the study to include other EoS such as the Bag model EoS, to comprehensively compare intermittency behavior.

Acknowledgement

I would like to express my gratitude to Prof. Sanjay K. Ghosh, Dr. Saikat Biswas and colleagues at Bose Institute, Kolkata, for their invaluable guidance and support.

 \bullet Special thanks to the ATHIC 2025 organizers for providing the platform to present this work.

Thank you for the attention !!!