

Investigating the Chiral Magnetic Wave at RHIC-STAR

Ankita Singh Nain (for the STAR Collaboration) D.A.V. College, Chandigarh, India

10th Asian Triangle Heavy-Ion Conference (ATHIC 2025)

Supported in part by

- Introduction
- Motivation
- Methodology
- Data Set \bullet
- Results
- Summary

Ankita Singh Nain, ATHIC, 15 Jan 2025

Outline

Introduction

Chiral Separation Effect (CSE)

CSE: With chirality imbalance, net electric charge current emerges along magnetic field.

- through the CME and CSE.
- overlap region. This results in charge-dependent elliptic flow asymmetry.

Ankita Singh Nain, ATHIC, 15 Jan 2025

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, Phys. Rev. Lett. 107, 052303 (2011).

Chiral Magnetic Wave (CMW): Charge and axial density fluctuations mutually induce each other

CMW evolution results in formation of electric charge quadrupole in the QGP medium, where positive charges accumulate at the poles and negative charges at the equator of the nuclear

Isobar Collisions

• The magnetic field is ~10-18% larger in Ru+Ru collisions than Zr+Zr collisions due to the presence of 4 extra protons in Ru than Zr. • Enhanced magnetic fields in Ru+Ru collisions are expected to give rise to larger CMW signal in Ru+Ru collisions.

Ankita Singh Nain, ATHIC, 15 Jan 2025

P. Tribedy, Free meson seminar, TIFR, Oct 7th, 2021

Methodology

and negative charge particles, predicted to be proportional to charge asymmetry (A).

$$v_2^{\pm} - v_{2,base}^{\pm} = \mp \frac{r}{2}A \qquad \longrightarrow \qquad \Delta v_2 = v_2^- - v_2^+ \approx rA$$

- Experimentally, r is measured by slope of v_2 vs A.
- correlator):

$$\langle v_2^{\pm}A \rangle - \langle A \rangle \langle v_2^{\pm} \rangle \approx \mp r(\langle A^2 \rangle - \langle A \rangle^2)/2 \approx \mp r\sigma_A^2/2$$

• Δ Integral Correlator :

 $|\Delta IC = \langle v_2 A \rangle - \langle A \rangle \langle v_2 \rangle$

* Phys. Rev. C 93 (2016) 044903 * arXiv:2308.16123v1 [nucl-ex]

Ankita Singh Nain, ATHIC, 15 Jan 2025

• Electric quadrupole moment induced by CMW leads to difference in elliptic flow (v_2) of positive

$$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

• Another observable that can be used is covariance of v_2^{\pm} and A (3-point correlator or 3-particle

$$\langle - (\langle v_2^+ A \rangle - \langle A \rangle \langle v_2^+ \rangle) \approx r \sigma_A^2$$

Anisotropic Flow Calculation

The two-particle Q-cumulant method :

 $Q_n = \sum^M e^{in\phi_j},$ $p_n = \sum_{n \in \mathbb{N}} p_n$ i=1Reference Particles (REF) Particle of Int

The reference two particle cumulant is : $C_n\{2\}$

here Q_n^A and Q_n^B are flow vectors calculated from reference particles for sub-event A and B. M_A and M_{R} are multiplicities of these two sub-events.

The two-particle cumulant is calculated as $\langle 2 \rangle^A$

A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C 83, 044913 (2011)

Ankita Singh Nain, ATHIC, 15 Jan 2025

p	Sub-Event	REF p _T < 2.0 GeV/c	POI p _T < 0.5 C
$e^{in\phi_j}$	Α	-1 < η < -0.3	0 < η <
terest (POI) $Q_n^A \cdot Q_n^{B*}$	B	0.3 < η < 1	-1 < η
$= \frac{M}{M_A M_B}$			

$$A = \frac{p_n^A \cdot Q_n^{A^*}}{m_p^A M_A}, \quad \langle 2' \rangle^B = \frac{p_n^B \cdot Q_n^{B^*}}{m_p^B M_B}, \quad d_n\{2\} = \langle \langle 2' \rangle \rangle$$

With all charged hadrons (h) as REF, the anisotropic flow of h^{\pm} : $v_n^{h^{\pm}}\{2\} = d_n\{2; h^{\pm} - REF\} / \sqrt{C_n\{2\}}$

Ankita Singh Nain, ATHIC, 15 Jan 2025

STAR Detector

- Time Projection Chamber (TPC) • Track reconstruction • Energy loss calculation
- Time Of Flight detector (TOF) • Particle identification • Pile-up rejection

\star Collision Type: Zr+Zr (a) 200 GeV (~ 1.6B Events after cuts) Ru+Ru @ 200 GeV (~ 1.6B Events after cuts)

Event Cuts

- Minimum bias Trigger (600001, 600011, 600021, 600031)
- $|V_{z,TPC} V_{z,VPD}| < 5 \text{ cm}$
- $V_r < 2 \text{ cm}$
- Vertex cut: $-35 < V_Z < 25$ cm

Ankita Singh Nain, ATHIC, 15 Jan 2025

Data Set

\star Run 18

Track Cuts

- $N_{Hits} > 15$
- $N_{\text{Hits}}/N_{\text{HitsPoss}} > 0.52$
- DCA < 3 cm
- $0.15 < p_T < 2 \text{ GeV/}c$
- $|\eta| < 1$

Covariance of v₂ and A

- Both Collision systems shows similar values of $\Delta IC/\sigma_A^2$ (for v_2).

Ankita Singh Nain, ATHIC, 15 Jan 2025

• Both Ru+Ru and Zr+Zr show charge dependent splitting of covariance between v_2 and A.

Covariance of V₃ and A

- Both Ru+Ru and Zr+Zr shows no splitting of covariance between v_3 and A.

Ankita Singh Nain, ATHIC, 15 Jan 2025

• The values of $\Delta IC/\sigma_A^2$ (for v_3) are similar for both collision systems with the uncertainties.

- despite the Ru having 4 more protons than the Zr.
- pol0 fit value is 1.0042 +/- 0.0265.

Ankita Singh Nain, ATHIC, 15 Jan 2025

Ratio

• No enhancement is observed in $\Delta IC/\sigma_A^2$ for Ru+Ru collisions compared to Zr+Zr collisions,

- charged particles.
- more protons than the Zr.

Comparison of results with other collision systems to study system size dependence. To determine f_{CMW} using Event Shape Engineering (ESE) technique.

Ankita Singh Nain, ATHIC, 15 Jan 2025

Both Ru+Ru and Zr+Zr shows similar splitting of integral correlator for positive and negative

Integral covariance of v_3 and A for positive and negative charged particle agrees within errors. No enhanced splitting is observed in the Ru+Ru compared to the Zr+Zr, despite the Ru having 4

Outlook

Thank you for your Attention !

