Extended Relaxation Time approach (ERTA) to Relativistic non-resistive Magnetohydrodynamics

Sunny Kumar Singh

IIT Gandhinagar

ATHIC 2025

Based on S. Singh, M. Kurian, V. Chandra, Phy. Rev. D 110, 014004 (2024) Work in Progress with S. Bhadury, M. Kurian and V. Chandra

Contents

Heavy Ion Collision

2 Results for B = 0 case

(3) $B \neq 0$ case

 $\textcircled{0} \text{ Results for } B \neq 0$

Conclusion

э.

イロト イヨト イヨト イヨト

• The QGP phase can be modelled in the framework of relativistic hydrodynamics which is a relativisitc generalization of fluid mechanics.

Figure: Various stages of Ultrarelativistic heavy-ion collisions

< □ > < □ > < □ > < □ > < □ >

Equations of motion

• Using the energy momentum and number current conservation laws, the fluid dynamical equations of motion are given by:

$$\dot{\varepsilon} + (\varepsilon + P)\theta - \pi^{\mu\nu}\sigma_{\mu\nu} = 0, \qquad (1)$$

$$(\epsilon + P)\dot{u}^{\mu} - \nabla^{\mu}P + \Delta^{\mu}_{\nu}\partial_{\gamma}\pi^{\gamma\nu} = 0, \qquad (2)$$

$$\dot{n} + n\theta + \partial_{\mu}n^{\mu} = 0 \tag{3}$$

- ϵ , n and P are related to each other via the equation of state.
- The evolution equations for $\pi^{\mu\nu}$ and n^{μ} is needed which can be derived from entropy-current analysis, requiring $\partial_{\mu}S^{\mu} \ge 0$.
- $\bullet\,$ The evolution equation for $\pi^{\mu\nu}$ that we need to ensure the second law of thermodynamics is guaranteed is:

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \tau_{\pi\pi}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} - \tau_{\pi\pi}n^{\langle\mu}\dot{\mu}^{\nu\rangle} + \lambda_{\pi n}n^{\langle\mu}\nabla^{\nu\rangle}\alpha + l_{\pi n}\nabla^{\langle\mu}n^{\nu\rangle}.$$
(4)

• The transport coefficients must be determined from a microscopic theory.

э

(日)

Kinetic Theory Approach

• With $f_0(x,p)$ being the local equilibrium distribution, the deviation of equilibrium can be written as $\delta f = f - f_0$.

$$\pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int \mathrm{d}\mathbf{P} p^{\alpha} p^{\beta} \delta f \tag{5}$$

• To get the form of δf , the evolution of f(x,p) is needed via the Boltzmann equation.

$$p^{\mu}\partial_{\mu}f = \mathcal{C}[f] \tag{6}$$

• The collision term which encodes the details about various collisional processes happening in the system can be approximated using the relaxation time approximation (RTA) as:

$$\mathcal{C}[f] = -\frac{(u \cdot p)}{\tau_R}(f - f_0) \tag{7}$$

• The relaxation time τ_R is momentum independent for RTA since a momentum dependent $\tau_R(p)$ leads to violation of conservation laws with Landau matching condition:

$$\int dP \mathcal{C}[f] \neq 0 \neq \int dP p^{\mu} \mathcal{C}[f]$$
(8)

イロト 不得 トイヨト イヨト

э

Extended relaxation time

• The collision kernel for extended relaxation time reads ¹:

$$C[f] = -\frac{(u \cdot p)}{\tau_R(x, p)} (f - f_0^*)$$
(9)

Where f_0^* is the equilibrium distribution function in the "thermodynamic" frame.

$$f_0^* = e^{-\beta^* (u^* \cdot p) + \alpha^*}$$
(10)

• Where $u^{*\mu}$, β^* and α^* are related with the usual variables by:

$$u^{\mu*} = u^{\mu} + \delta u^{\mu}, \qquad \mu^* = \mu + \delta \mu, \qquad T^* = T + \delta T,$$
 (11)

 δu^{μ} , $\delta \mu$ and δT must be determined using the matching conditions, $\epsilon = \epsilon_0$, $n = n_0$ and the Landau frame condition $u_{\mu}T^{\mu\nu} = \epsilon u^{\nu}$.

• This lets us use a momentum dependent relaxation time to determine the transport coefficients. The form of momentum dependent $\tau_R(x, p)$ is taken as:

$$\tau_R(x,p) = \frac{\kappa}{T} \left(\frac{u \cdot p}{T}\right)^\ell \tag{12}$$

イロン イ団 とく ヨン イヨン

¹D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, *Physics Letters B, 831 (2022)*

э

Shear stress evolution within ERTA

• The δf with the necessary counter terms inside $u^{*\mu},\,\beta^*$ and μ^* leads to:

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \delta_{\pi\pi}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \tau_{\pi\pi}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} - \tau_{\pi\pi}n^{\langle\mu}\dot{\mu}^{\nu\rangle} + \lambda_{\pi n}n^{\langle\mu}\nabla^{\nu\rangle}\alpha + l_{\pi n}\nabla^{\langle\mu}n^{\nu\rangle}.$$
(13)

- This evolution equation is second order in the gradient expansion of the hydrodynamic fields
- One of the central results of the current work is that in the massless MB limit, the evolution of the number diffusion n^{μ} is coupled to the evolution of the shear stress tensor whereas they are decoupled in the RTA limit ².
- We also have the number evolution equation given by:

$$\dot{n}^{\langle \mu \rangle} + \frac{n^{\mu}}{\tau_{n}} = \beta_{V} \nabla^{\mu} \alpha - \lambda_{V\pi} \pi^{\mu\lambda} \nabla_{\lambda} \alpha - \tau_{V\pi} \pi^{\mu}_{\lambda} \dot{u}^{\lambda} - \delta_{VV} n^{\mu} \theta + l_{V\pi} \Delta^{\mu}_{\alpha} \partial_{k} \pi^{\alpha k} - \lambda_{VV} \sigma^{\mu}_{\lambda} n^{\lambda} - \lambda_{\omega} \omega^{\mu}_{\lambda} n^{\lambda}.$$
(14)

• All these transport coefficients depends on the momentum dependent parameter ℓ via the thermodynamic integrals.

²A. Jaiswal, B. Friman, K. Redlich, Phy Lett B 751 (2015)

Some results ..

Plot for one of these transport coefficients against ℓ as an example to show their dependence on the momentum dependence parameter ℓ . The ratio of relaxation times for number diffusion mode to shear mode is also shown.

æ

< □ > < □ > < □ > < □ > < □ >

Exact calculations of transport coefficients

• Some recent studies ³,⁴ analytically extracted a full set of eigenvalues and eigenfunctions of the relativistic linearized Boltzman collision operator for $\lambda \phi^4$ theory.

$$\hat{L}\phi_k = \frac{g}{2} \int dK' dP dP' f_{0k'}(2\pi)^5 \delta^{(4)}(k+k'-p-p')(\phi_p+\phi_{p'}-\phi_k-\phi_{k'}).$$
(15)

• Where the eigenfunctions and their eigenvalues are given by:

$$\hat{L}L_{n\mathbf{k}}^{(2m+1)}k^{\langle\mu_{1}}\dots k^{\,\mu_{\ell}\rangle} = -\frac{g\mathcal{M}}{2} \left[\frac{n+m-1}{n+m+1} + \delta_{\ell 0}\delta_{n 0}\right] L_{n\mathbf{k}}^{(2m+1)}k^{\langle\mu_{1}}\dots k^{\,\mu_{m}\rangle}, \quad (16)$$

• Expanding ϕ_k in terms of these eigenfunctions and keeping the terms with zero eigenvalues leads to the collision kernel being:

$$\hat{L}\phi_k = -\frac{g\mathcal{M}}{2} \left[\phi_k - c_0 - c_1 L_{1k}^{(1)} - c_0^{\mu} k_{<\mu>} \right]$$
(17)

• Recovering the RTA limit from the exact theory leads to the form of momentum-dependent relaxation time being:

$$\tau_R(p) = \frac{2(u \cdot p)}{g\mathcal{M}}$$

<u>Which implies $\ell = 1$ and $\kappa = 4\pi^2/(ge^{\alpha})$ in the corresponding ERTA framework.</u>

- ³Gabriel S. Rocha, Caio V.P. de Brito, and Gabriel S. Denicol, Phys. Rev. D 108, 036017 (2023)
- 4 Gabriel S. Rocha, Gabriel S. Denicol, and Jorge Noronha, Phys. Rev. Lett. 127, 042301 (2021) < 🖹 + < 🖹 + 🖉 🖉 🔍

Sunny Singh (IIT Gandhinagar)

IIT Gandhinagar

9/15

Comparison with self interacting $\lambda\phi^4$ theory

Coefficients	$\begin{array}{l} RTA & results \\ (l=0) \end{array}$	$\begin{array}{l} ERTA & results \\ (l=1) \end{array}$	$\lambda\phi^4$ results (ex-act)
$ au_{\pi}$	$ au_c$	$\frac{24d_g}{gn_0\beta^2}$	$\frac{72}{gn_0\beta^2}$
η	$\frac{4P\tau_c}{5}$	$\frac{16d_g}{g\beta^3}$	$\frac{48}{g\beta^3}$
κ	$\frac{n_0\tau_c}{12}$	$\frac{d_g}{g\beta^2}$	$\frac{3}{g\beta^2}$
$\delta_{\pi\pi}$	$\frac{4}{3}$	$\frac{4}{3}$	$\frac{4}{3}$
$ au_{\pi\pi}$	$\frac{10}{7}$	2	2
$l_{\pi n}$	0	$-\frac{4}{3\beta}$	$-\frac{4}{3\beta}$
$ au_{\pi n}$	0	$-\frac{16}{3\beta}$	$-\frac{16}{3\beta}$
$\lambda_{\pi n}$	0	$\frac{2}{3\beta}$	$\frac{5}{6\beta}$

Table: Comparison of the ERTA coefficients with exact results from $\lambda \phi^4$ theory for shear coefficients.

・ロト ・四ト ・ヨト ・ヨト

Comparison with self interacting $\lambda \phi^4$ theory.

Coefficients	$\begin{array}{l} RTA & results \\ (l=0) \end{array}$	$\begin{array}{l} ERTA & results \\ (l=1) \end{array}$	$\lambda\phi^4$ results (ex-act)
$ au_n$	$ au_c$	$\frac{20d_g}{gn_0\beta^2}$	$\frac{60}{gn_0\beta^2}$
$ au_n/ au_\pi$	1	5/6	5/6
β_v	$\frac{n_0}{12}$	$\frac{n_0}{20}$	$\frac{n_0}{20}$
$2\eta_0\lambda_{V\pi} + \kappa\lambda_{VV}$	$\frac{3n_0\tau_c}{20}$	$\frac{19d_gT^2}{5g}$	$\frac{57T^2}{5g}$
$\tau_{V\pi} + l_{V\pi}$	0	$\frac{\beta}{20}$	$\frac{\beta}{20}$
$l_{V\pi}$	0	$\frac{\beta}{20}$	$\frac{\beta}{40}$
δ_{VV}	1	1	1
λ_{ω}	-1	-1	-1

Table: Comparison of the ERTA coefficients with exact results from $\lambda \phi^4$ theory for number diffusion coefficients.

イロト イヨト イヨト イヨト

$B \neq 0$ case

Transport coefficients in MHD

- In the non-resistive limit, $E^{\mu} \rightarrow 0$ and $F^{\mu\nu} \rightarrow B^{\mu\nu}$
- The Boltzmann equation in the presence of the external magnetic fields and using the extended relaxation time is given by:

$$p^{\mu}\partial_{\mu}f - qB^{\sigma\nu}p_{\nu}\frac{\partial f}{\partial p^{\sigma}} = -\frac{u\cdot p}{\tau_R(x,p)}(f - f_0^*)$$
(18)

• Using the δf from above, the second order shear evolution equation is given by:

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} - \frac{4}{3}\pi^{\mu\nu}\theta + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \tau_{\pi\pi}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} - \tau_{\pi n}n^{\langle\mu}\dot{u}^{\nu\rangle} + \lambda_{\pi n}n^{\langle\mu}\nabla^{\nu\rangle}\alpha + l_{\pi n}\nabla^{\langle\mu}n^{\nu\rangle} + \delta_{\pi B}\Delta^{\mu\nu}_{\eta\beta}qBb^{\gamma\eta}g^{\beta\rho}\pi_{\gamma\rho} - qB\tau_{\pi nB}\dot{u}^{\langle\mu}b^{\nu\rangle\sigma}n_{\sigma} - qB\lambda_{\pi nB}n_{\sigma}b^{\sigma\langle\mu}\nabla^{\nu\rangle}\alpha - q\tau_{0}\delta_{\pi nB}\nabla^{\langle\mu}\left(B^{\nu\rangle\sigma}n_{\sigma}\right)$$
(19)

• With a finite magnetic field, the shear viscosity splits into five components:

$$\pi^{\mu\nu} = \left[2\eta_{00} \left(\Delta^{\mu\alpha} \Delta^{\nu\beta} \right) + \eta_{01} \left(\Delta^{\mu\nu} - \frac{3}{2} \Xi^{\mu\nu} \right) \left(\Delta^{\alpha\beta} - \frac{3}{2} \Xi^{\alpha\beta} \right) - 2\eta_{02} \left(\Xi^{\mu\alpha} b^{\nu} b^{\beta} + \Xi^{\nu\alpha} b^{\mu} b^{\beta} - 2\eta_{03} \left(\Xi^{\mu\alpha} b^{\nu\beta} + \Xi^{\nu\alpha} b^{\mu\beta} \right) + 2\eta_{04} \left(b^{\mu\alpha} b^{\nu} b^{\beta} + b^{\nu\alpha} b^{\mu} b^{\beta} \right) \right] \sigma_{\alpha\beta}.$$

$$(20)$$

イロト イボト イヨト イヨト

The Navier Stokes limit (comparision with RTA MHD results)

Where, $\chi = \frac{qB\tau_0(x)}{T}$.

As we see, the momentum dependence of the ERTA has a significant effect on the various shear viscosity coefficients even in the first order.

æ

13/15

イロン イ団 とく ヨン イヨン

Conclusion

- This study shows that there is a significant impact of momentum dependence of the relaxation time on the dynamics of the fluid in both with and without magnetic field.
- Incorporating these affects via the modified transport coefficients should lead to a more accurate simulation of the expanding fireball in heavy ion collisions.
- $\bullet\,$ Further work can be done in recognizing the momentum dependence parameter ℓ for various theories.
- The Magnetohydrodynamics of ERTA can be studied in the resistive case as an extension of this work.

イロト イボト イヨト イヨト

Thank you!

2

イロト イヨト イヨト イヨト