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Heavy lon Collision

Heavy lon Collision

relativisitc generalization of fluid mechanics.

@ The QGP phase can be modelled in the framework of relativistic hydrodynamics which is a
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Heavy lon Collision

Equations of motion

Using the energy momentum and number current conservation laws, the fluid dynamical
equations of motion are given by:

é4(e+ P)0— "0, =0, (1)
(e + P)u* — VFP 4+ AF9,x7" =0, 2)
n+nb 4+ dynt =0 3)

@ ¢, n and P are related to each other via the equation of state.

@ The evolution equations for 7#¥ and n* is needed which can be derived from entropy-current
analysis, requiring 9,S* > 0.

The evolution equation for 7#¥ that we need to ensure the second law of thermodynamics is
guaranteed is:
THY

ey ¢ 2 2Br0HY — Spnm’ O + 27r,<y“o.)”>'Y — 'r7r7r71:<yucr”>'y
Tr

- Twnn<uuu> + )\wnn<“V">oz + lﬂ—nv<”"l’l/y> . (4)

@ The transport coefficients must be determined from a microscopic theory.
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Kinetic Theory Approach

e With fo(z,p) being the local equilibrium distribution, the deviation of equilibrium can be
written as 6f = f — fo.

Y = Agg /deapﬁéf (5)
o To get the form of §f, the evolution of f(z,p) is needed via the Boltzmann equation.
p*ouf = C[f] (6)

@ The collision term which encodes the details about various collisional processes happening in
the system can be approximated using the relaxation time approximation (RTA) as:

clfl = - P s g )

TR
@ The relaxation time 7r is momentum independent for RTA since a momentum dependent
Tr(p) leads to violation of conservation laws with Landau matching condition:

[avcin#oz [appreys ©)
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Heavy lon Collision

Extended relaxation time

@ The collision kernel for extended relaxation time reads 1:

cm=—£§%w-%> 9)

Where f is the equilibrium distribution function in the “thermodynamic” frame.
fi=e B WPt (10)

o Where u*#,8* and a* are related with the usual variables by:

uh* = ut 4 dut, w=p+ou, T =T + 0T, (11)
dut, S and 6T must be determined using the matching conditions, € = ¢p, n = ng and the
Landau frame condition u,TH" = eu”.

o This lets us use a momentum dependent relaxation time to determine the transport
coefficients. The form of momentum dependent 7r(z, p) is taken as:

mnlap) = = ()" (12)

1D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, Physics Letters B, 831 (2022)
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Heavy lon Collision

Shear stress evolution within ERTA

o The §f with the necessary counter terms inside u*#, 3* and p* leads to:

) 4 ™ _ 2Br0t — Spamh’ O + oMWY — S
. = T T ~ o Ty
™

— Tenn ) 4 A n BV o L, VR (13)

@ This evolution equation is second order in the gradient expansion of the hydrodynamic fields

@ One of the central results of the current work is that in the massless MB limit, the evolution
of the number diffusion n* is coupled to the evolution of the shear stress tensor whereas
they are decoupled in the RTA limit 2.

o We also have the number evolution equation given by:

) 4+ = BuVHa — Ay amh Vo — TVﬂ—Tl'éf’llA — dyynto
n

+ ly ARGk — )\vvagn’\ — )\ww’;nk. (14)

@ All these transport coefficients depends on the momentum dependent parameter £ via the
thermodynamic integrals.

2A. Jaiswal, B. Friman, K. Redlich, Phy Lett B 751 (2015)
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Heavy lon Collision

Some results..
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Plot for one of these transport coefficients against £ as an example to show their dependence on
the momentum dependence parameter £. The ratio of relaxation times for number diffusion mode

to shear mode is also shown.
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Results for B = 0 case

Exact calculations of transport coefficients

@ Some recent studies 3,* analytically extracted a full set of eigenvalues and eigenfunctions of
the relativistic linearized Boltzman collision operator for A¢* theory.

Lon=1 / dIC dPAP’ fors (2m)°8 Y (k + K —p = p')(bp + &y — bk — b1r)- (15)

@ Where the eigenfunctions and their eigenvalues are given by:
ﬂL(zl(m+l)k(“1 ke = _aM |:n—|—m —
n

1
5 +5e06n0] LC DR e (16)

n+m+1

@ Expanding ¢ in terms of these eigenfunctions and keeping the terms with zero eigenvalues
leads to the collision kernel being:
. gM 1
L(z)k = _T |:¢k: —Co — Cng.k:) - Cgk}<u>:| (17)

@ Recovering the RTA limit from the exact theory leads to the form of momentum-dependent
relaxation time being:

_ 2(u-p)
TrR(P) = M
Which implies £ = 1 and & = 472/(ge®) in the corresponding ERTA framework.

3Gabriel S. Rocha, Caio V.P. de Brito, and Gabriel S. Denicol, Phys. Rev. D 108, 036017 (2023)
4Gabriel S. Rocha, Gabriel S. Denicol, and Jorge Noronha, Phys. Rev. Lett. 127, 042301 (2021)
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Results for 0 case

Comparison with self interacting A¢* theory

Coefficients RTA results | ERTA  results | A¢? results (ex-
(1=0) (l=1) act)
24dg 72
i Te gno B2 gnoB?
4P7, 16d, 48
" 5 98° 983
K noTc dg 3
12 982 9BZ
4 4 4
Onm 3 3 3
Trm 170 2 2
4 4
brn 0 ~38 ~38
16 16
Tan 0 ~35 ~35
2 5
Arn 0 33 68

Table: Comparison of the ERTA coefficients with exact results from A¢* theory for shear coefficients.
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Comparison with self interacting A¢?* theory.

Coefficients RTA results | ERTA  results | A¢? results (ex-
(1=0) (l=1) act)
20d 60
Tn T Tob? 0%
Tn/Tﬂ' 1 5/6 5/6
n mn N,
Bu vl 20 20
19d, T 2
20Av s + KAVY nare Bl ST
Tvr +lve 0 s £
B B
lvr 0 20 10
dvv 1 1 1
Aw -1 -1 —1

Table: Comparison of the ERTA coefficients with exact results from A¢? theory for number diffusion coefficients.
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Transport coefficients in MHD

@ In the non-resistive limit, E# — 0 and F'*Y — BHY

o The Boltzmann equation in the presence of the external magnetic fields and using the
extended relaxation time is given by:

5]
pHOuf —qB7py apf = T:(xpp) (f=15) (18)

@ Using the 6 f from above, the second order shear evolution equation is given by:

w4 T og g vy 2l — i)
Tr 3
— Tann i) 4 Aenn VY @+ L V) 4 6, s AREgBY g%,
- qBTTrnBu<'ubV>o-na - qB)\ﬂnBTbabJ<”Vl’>a - qTO(SﬂnBVGL (BU)GHO) (19)
o With a finite magnetic field, the shear viscosity splits into five components:
2

3 3
oY = {27700 (A“O‘A”ﬂ) + 101 (A‘“’ _ 75“”) (AD‘B _ 750‘6) — 2n02 (E apvyh
2

+ VoL B 2n03 (Euabuﬂ + Euabl—bﬂ) + 2104 (b"m‘b"bB + buab#bﬁ)]aaﬁ_ (20)
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The Navier Stokes limit (comparision with RTA MHD results)

Where, x = ‘IB%O(Z).
As we see, the momentum dependence of the ERTA has a significant effect on the various shear
viscosity coefficients even in the first order.

Sunny Singh (IIT Gandhinagar) IIT Gandhinagar



Conclusion

Conclusion

o This study shows that there is a significant impact of momentum dependence of the
relaxation time on the dynamics of the fluid in both with and without magnetic field.

o Incorporating these affects via the modified transport coefficients should lead to a more
accurate simulation of the expanding fireball in heavy ion collisions.

o Further work can be done in recognizing the momentum dependence parameter ¢ for various
theories.

@ The Magnetohydrodynamics of ERTA can be studied in the resistive case as an extension of
this work.
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Thank you!
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