Contribution ID: 101 Type: not specified

Relativistic second-order spin hydrodynamics: A correlation function approach using Zubarev's non-equilibrium statistical operator

Wednesday 15 January 2025 12:04 (7 minutes)

Utilizing Zubarev's nonequilibrium statistical operator, we derive the second-order expression for the dissipative tensors in relativistic spin hydrodynamics, namely the rotational stress tensor $(\tau_{\mu\nu})$, boost heat vector (q_{μ}) , shear stress tensor $(\pi_{\mu\nu})$, and bulk viscous pressure (Π). The emergence of the first two terms, $\tau_{\mu\nu}$ and q_{μ} , is attributed to the inclusion of the antisymmetric part in the energy-momentum tensor. In this work, we also treat the spin density $(S^{\mu\nu})$ as an independent thermodynamic variable alongside energy density and particle density, leading to an additional transport coefficient characterized by the correlation between $S^{\mu\nu}$ and $\tau_{\mu\nu}$. Finally, we derive the evolution equations for the aforementioned tensors— $\tau_{\mu\nu}$, q_{μ} , $\pi_{\mu\nu}$, and Π .

Author: Mr TIWARI, Abhishek (Indian Institute of Technology Roorkee)

Co-author: Prof. PATRA, Binoy Krishna (Indian Institute of Technology Roorkee)

Presenter: Mr TIWARI, Abhishek (Indian Institute of Technology Roorkee)

Session Classification: Parallel B

Track Classification: 4. Collective dynamics - conserved charges, spin, vorticity, freezeout, after-

burner