



# First measurement of high $p_{\rm T}$ azimuthal anisotropy using subevent cumulants in pPb collisions at CMS

#### **Rohit Kumar Singh**

(For the CMS Collaboration)

#### **Indian Institute of Technology Madras**



Date: Jan 15, 2025









Associated yield / (GeV/c)







Associated yield / (GeV/c)











**ATHIC 2025** 



Jets are the experimental signatures of quarks and gluons. They reflect the

atics and "topology" of par

adrons to accurately reconstru

 experiments measure frag artons: hadrons Tool: Jet-finding algorithm Apply same algorithm to data and tical calculations

nartonic kinematics pQCD calcu

#### Jets connect theory and experiment **\*** Cumulant method: ∑p<sub>T particle</sub> Multiparticle correlation technique **Non-flow suppression in a data-driven way** $c_n\{4\} = \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle \langle \langle 2 \rangle \rangle$ => Differential cumulant : $d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$ **3 ŘFPs** 1 POI

=> Differential Flow :

$$w'_n\{4\} = -\frac{d_n\{4\}}{(-c_n\{4\})^{3/4}} \longrightarrow$$













Rohit Kumar Singh(IITM)

**ATHIC 2025** 



## $\# v_2\{4\} \text{ in } 185 \le N_{trk}^{offline} < 250 \text{ as a function of } p_T$



- At low  $p_T$ , PbPb has larger  $v_2$ {4} than pPb
- At high  $p_T$ , similar magnitude and similar trend of subevent  $v_2{4}$



## $\# v_2\{4\} \text{ in } 185 \le N_{trk}^{offline} < 250 \text{ as a function of } p_T$



- At low  $p_T$ , PbPb has larger  $v_2$ {4} than pPb
- At high  $p_T$ , similar magnitude and similar trend of subevent  $v_2{4}$



**\* 4 subevent**  $v_2$ {4} in 185  $\leq (N_{trk}^{offline}) < 250$ 





- At low  $p_T$ , PbPb has larger  $v_2$ {4} than pPb
- At high  $p_T$ , similar magnitude and similar trend of 4 subevent values



## **\* 4 subevent** $v_2$ {4} **in** 185 $\leq (N_{trk}^{offline}) < 250$ pPb 186 nb<sup>-1</sup>(8 16 TeV) + PbPb 0.60 nb<sup>-1</sup>(5 0





- At low  $p_T$ , PbPb has larger  $v_2$ {4} than pPb
- At high  $p_T$ , similar magnitude and similar trend of 4 subevent values



 $v_2$ {4} in different  $N_{trk}^{offline}$  bins with  $p_T^{POI} > 6$  GeV



• Similar magnitude and trend for both PbPb and pPb when  $p_T^{\text{POI}} > 6$  GeV across all multiplicity bins

### **Summary & outlook**

The results of  $v_2{4}$  with subevents for pPb & PbPb collisions at  $\sqrt{s_{NN}} = 8.16$  TeV &  $\sqrt{s_{NN}} = 5.02$  TeV, resp.

After using subevent to remove nonflow, we have obtained a significant positive value for  $v_2{4}$  at high  $p_T$  in pPb

A remarkable similarity in high multiplicity pPb and peripheral PbPb collisions

(Ready for journal submission (PRL) and selected for a talk at QM 25)





CMS

## **Summary & outlook**

The results of  $v_2{4}$  with subevents for pPb & PbPb collisions at  $\sqrt{s_{NN}} = 8.16$  TeV &  $\sqrt{s_{NN}} = 5.02$  TeV, resp.

After using subevent to remove nonflow, we have obtained a significant positive value for  $v_2{4}$  at high  $p_T$  in pPb

A remarkable similarity in high multiplicity pPb and peripheral PbPb collisions

(Ready for journal submission (PRL) and selected for a talk at QM 25)

**\*** Final thoughts:

: 🥰

- Enough evidence to show QGP is created in small and large systems!
- Conditions under which QGP formation is possible needs further discussion
- **Where in system size is the onset of particle suppression?**
- Strong motivation for system size scan at the LHC (O-O, p-O)











**\*** Differential cumulant  $d_2{4}$  calculation in standard and 2 subevent method

Standard (w/o subevent)



$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$

**\*** Differential cumulant  $d_2{4}$  calculation in standard and 2 subevent method

Standard (w/o subevent)



$$d_n\{4\} = \langle \langle 4' \rangle \rangle - 2 \langle \langle 2' \rangle \rangle \cdot \langle \langle 2 \rangle \rangle$$

#### 2 subevent



#### **\*** Differential cumulant $d_2{4}$ calculation in 3 & 4 subevent method

3 subevent



#### **\*** Differential cumulant $d_2{4}$ calculation in 3 & 4 subevent method

3 subevent



Rohit Kumar Singh

-2.4

-1.2

0

1.2

2.4

▶ η

#### **Cross-check**



**\*** *d*<sub>2</sub>{4} **in HIJING in** 60 ≤ ( $N_{trk}^{gen}$ ) < 120



• HIJING lacks collectivity => used to cross check non-flow subtraction of subevent cumulant

#### **Cross-check**

**\***  $v_2$ {4} with toy model simulation



• Able to extract almost all input v2 with 4 subevent

**Supplementry plot** 

## $v_2$ {4} in different $N_{trk}^{corrected}$ bins with POI $p_T > 6$ GeV



|                                   | pPb                                         |                                            | PbPb                                        |                                            |
|-----------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|
| $N_{\rm trk}^{\rm offline}$ range | $\langle N_{\rm trk}^{\rm offline} \rangle$ | $\langle N_{ m trk}^{ m corrected}  angle$ | $\langle N_{\rm trk}^{\rm offline} \rangle$ | $\langle N_{ m trk}^{ m corrected}  angle$ |
| (0,60)                            | 27                                          | 33±1                                       | 23                                          | 39±2                                       |
| [60, 120)                         | 83                                          | $101 \pm 4$                                | 87                                          | $152 \pm 6$                                |
| [120, 150)                        | 132                                         | $160 \pm 6$                                | 135                                         | $233 \pm 10$                               |
| [150, 185]                        | 164                                         | $198{\pm}7$                                | 168                                         | 287±12                                     |
| [185, 250)                        | 202                                         | $245 \pm 10$                               | 216                                         | $368 \pm 16$                               |