Dependence of directed flow on system size and net conserved charges from quark coalescence in heavy-ion collisions

<u>Kishora Nayak¹</u>, Vipul Bairathi², Zi-Wei Lin³ and Shusu Shi⁴

¹Panchayat College, SU, Bargarh 768028, India
 ²Universidad de Tarapac´a, Arica, 1000000, Chile
 ³East Carolina University, Greenville, NC, 27858, USA
 ⁴Central China Normal University, Wuhan, 430079, China

10th Asian Triangle Heavy-Ion Conference -ATHIC 2025, IISER, Berhampur, India

Motivation Malysis details Markov Results Part-I: System size dependence v₁ **Operate: Part-II:** Dependence of Δv_1 on conserved charges **Summary**

ATHIC-2025, IISER-Berhampur, Odisha

Part-I System Size Dependence v₁ Study

 \checkmark System size dependence v₁ study

- \rightarrow Help to estimate the participant-spectator contribution
- →Improve understanding of EOS for symmetric nuclear matter

Motivation

 \checkmark System size dependence v₁ study

- \rightarrow Help to estimate the participant-spectator contribution
- →Improve understanding of EOS for symmetric nuclear matter
- √QGP bulk (mostly soft particles) tilted in rapidity, unlike the hard scattering profile (symmetric)
 - \rightarrow Hard-soft asymmetry in initial state
 - \rightarrow Induces (negative) v₁ for hard partons Phys. Rev. Lett. 120, 192301 (2018); Phys. Rev. C 72, 034907 (2005)

Motivation

Analysis Details

✓ Woods-Saxon function:

Deform Nuclei: Ru, Zr, U,

- • ρ_0 is the normal nuclear density
- a is the surface diffuseness parameter
- $R(\theta, \phi)$ is the parameter characterizing the deformation of the nucleus:

$$R(\theta,\phi) = R_0[1+\beta_2 Y_{2,0}(\theta,\phi) + \beta_3 Y_{3,0}(\theta,\phi)]$$

- R_0 represents the radius parameter
- β_2 : quadrupole, β_3 : octupole deformities
- $Y_{1,m}(\theta, \phi)$ are the spherical harmonics

A new coalescence AMPT-SM model is used

Analysis Details

✓ Woods-Saxon function:

Deform Nuclei: Ru, Zr, U,

$$ho(r, heta) = rac{
ho_0}{1+e^{[\{r-R(heta,\phi)\}/a]}}$$

- • ρ_0 is the normal nuclear density
- a is the surface diffuseness parameter
- $R(\theta, \phi)$ is the parameter characterizing the deformation of the nucleus:

$$R(\theta,\phi) = R_0[1+\beta_2 Y_{2,0}(\theta,\phi) + \beta_3 Y_{3,0}(\theta,\phi)]$$

- • R_0 represents the radius parameter
- β_2 : quadrupole, β_3 : octupole deformities
- $Y_{1,m}(\theta, \phi)$ are the spherical harmonics

A new coalescence AMPT-SM model is used

v₁ and dv₁/dη: Charged Hadrons

- Directed flow, $v_1 = \langle \cos(\phi \Psi_R) \rangle$
- Particles are identified from their Pythia ID
- \bullet v₁ is fitted with a cubic function to extract slope

Testing the Scaling Property of dv₁/dη

- QGP bulk is low- p_T dominated and a prominent positive flow is seen unlike the high- $p_{\rm T}$
- Scaling of v₁-slope is not perfect

Testing the Scaling Property of dv₁/dη

System size independence at low-pt

and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ \rightarrow QGP bulk for all these systems are driven by multiplicity

At low-p_T:

- A very weak centrality dependence
- System size independence

At High-*p*_T:

- •Both centrality and system size dependence of v_1 -slope is found
- •Higher slope magnitude might be due to more interactions with the medium

• A system size independence is found in AMPT-SM, similar to the STAR experimental observation for Cu+Cu

Part-II $Dependence of \Delta v_1 on Conserved Charges$

- (EoS) and Electromagnetic Fields (EMF)
- The v_1 is expected to follow Coalescence Sum Rule (CSR) or NCQ scaling when initial matter is in parton degrees of freedom and hadronizes via quark coalescence
- STAR Collaboration, arXiv:2304.02831 (2023)

Index	Quark mass	Charge	Strangeness	
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	[<i>p</i> (<i>ū</i>
2	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\overline{\Xi}^+($
3	$\Delta m pprox 0$	$\Delta q = \frac{1}{3}$	$\Delta S = 0$	$\frac{1}{3}$
4	$\Delta m pprox 0$	$\Delta q = \frac{2}{3}$	$\Delta S = 1$	[,
5	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[\bar{\Lambda}]$
6	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	[
7	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	ĺ
8	$\Delta m pprox 0$	$\Delta q = \frac{5}{3}$	$\Delta S = 2$	3]
9	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	
10	$\Delta m pprox 0$	$\Delta q = \frac{7}{3}$	$\Delta S = 4$	3]

A. Sheikh, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

T. Parida, S. Chatterjee arXiv:2305.08806 (2023)

Motivation

• The v_1 depends on properties of the created matter in heavy ion collisions such as the Equation of State

• Consider a combinations of 7 produced hadrons K^- , \bar{p} , Λ , ϕ , Ξ^+ , Ω^- , Ω^+ having same $N_{\bar{u}} + N_{\bar{d}} \& N_s + N_{\bar{s}}$ •Non-zero v_1 difference (Δv_1) especially if Δv_1 depends on Δq , it was proposed to be a consequence of EMF

 Δv_1 combination

- $\bar{u}\bar{d}$) + $\phi(s\bar{s})$] [$K(\bar{u}s)$ + $\bar{\Lambda}(\bar{u}\bar{d}\bar{s})$]
- $(\bar{d}\bar{s}\bar{s}) + K(\bar{u}s) [\bar{\Lambda}(\bar{u}\bar{d}\bar{s}) + \phi(s\bar{s})]$
- $\frac{1}{3}[\Omega^{-}(sss) + \bar{p}(\bar{u}\bar{u}\bar{d})] [\bar{K}(\bar{u}s)]$
- $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] [\frac{1}{2}\phi(s\bar{s}) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $\Lambda(\bar{u}\bar{d}\bar{s})] \left[\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})\right]$
- $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] [\phi(s\bar{s}) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] [\overline{K}(\overline{u}s) + \frac{1}{3}\overline{\Omega}^+(\overline{s}\overline{s}\overline{s})]$
- $[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s}\bar{s})] [\Omega^-(sss)]$
- $\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] [\overline{K}(\overline{u}s) + \frac{1}{3}\Omega^-(sss)]$

- (EoS) and Electromagnetic Fields (EMF)
- parton degrees of freedom and hadronizes via quark coalescence
- STAR Collaboration, arXiv:2304.02831 (2023)

Index	Quark mass	Charge	Strangeness	
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	[<i>p</i> (<i>ū</i>
2	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\overline{\Xi}^+($
3	$\Delta m pprox 0$	$\Delta q = \frac{1}{3}$	$\Delta S = 0$	$\frac{1}{3}$
4	$\Delta m pprox 0$	$\Delta q = \frac{2}{3}$	$\Delta S = 1$	[,
5	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[\bar{\Lambda}]$
6	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	[
7	$\Delta m pprox 0$	$\Delta q = \frac{4}{3}$	$\Delta S = 2$	ĺ
8	$\Delta m pprox 0$	$\Delta q = \frac{5}{3}$	$\Delta S = 2$	3]
9	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	
10	$\Delta m pprox 0$	$\Delta q = \frac{7}{3}$	$\Delta S = 4$	3]

A. Sheikh, D. Keane, P. Tribedy, Phys. Rev. C 105, 014912 (2022)

T. Parida, S. Chatterjee arXiv:2305.08806 (2023)

Motivation

• The v_1 depends on properties of the created matter in heavy ion collisions such as the Equation of State

• The v_1 is expected to follow Coalescence Sum Rule (CSR) or NCQ scaling when initial matter is in

• Consider a combinations of 7 produced hadrons K^- , \bar{p} , $\bar{\Lambda}$, ϕ , Ξ^+ , Ω^- , $\overline{\Omega}^+$ having same $N_{\bar{u}} + N_{\bar{d}} \& N_s + N_{\bar{s}}$ •Non-zero v_1 difference (Δv_1) especially if Δv_1 depends on Δq , it was proposed to be a consequence of EMF

 Δv_1 combination

- $\bar{u}\bar{d}$) + $\phi(s\bar{s})$] [$K(\bar{u}s)$ + $\bar{\Lambda}(\bar{u}\bar{d}\bar{s})$]
- $(\bar{d}\bar{s}\bar{s}) + \bar{K}(\bar{u}s) [\bar{\Lambda}(\bar{u}\bar{d}\bar{s}) + \phi(s\bar{s})]$
- $\frac{1}{3}[\Omega^{-}(sss) + \bar{p}(\bar{u}\bar{u}\bar{d})] [\bar{K}(\bar{u}s)]$
- $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] [\frac{1}{2}\phi(s\bar{s}) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $\Lambda(\bar{u}\bar{d}\bar{s})] \left[\frac{1}{3}\Omega^{-}(sss) + \frac{2}{3}\bar{p}(\bar{u}\bar{u}\bar{d})\right]$
- $[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] [\bar{K}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] [\phi(s\bar{s}) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
- $\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] [\overline{K}(\overline{u}s) + \frac{1}{3}\overline{\Omega}^+(\overline{s}\overline{s}\overline{s})]$
- $[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s}\bar{s})] [\Omega^-(sss)]$
- $\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] [\overline{K}(\overline{u}s) + \frac{1}{3}\Omega^-(sss)]$

- •How many independent set of equations are possible with 7 produced hadrons?
- Does Δv_1 depend only on Δq or also ΔS or both?
- •What is the right methodology to find relationship between Δv_1 , Δq and ΔS ?

Methodology

There are only 5 independent hadron sets for such hadron combinations.

Set #	Δq_{ud}	ΔS	Δq	L (left side)	
1	0	0	0	$v_1[K^-(ar u s)] + v_1[\overline\Lambda(ar u ar d ar s)]$	ı
2	0	0	0	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$rac{1}{2}v_1$
3	0	0	0	$rac{1}{3}v_1[\Omega^-(sss)]+rac{1}{3}v_1[\overline{\Omega}^+(ar{s}ar{s}ar{s})]$	
4	0	1	1/3	$rac{1}{2}v_1[\phi(sar{s})]$	
5A	1/3	1	2/3	$rac{1}{2}v_1[\phi(sar{s})]+rac{1}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$	
$5\mathrm{B}$	1/3	1	2/3	$v_1ig[\overline{\Lambda}(ar{u}ar{d}ar{s})ig]$	$\frac{1}{2}u$

K. Nayak, S. Shi & Z. W. L, Phys. Lett. B 849, 138479 (2024)

As per the CSR :
$$v_1^{\rm H}(p_{\rm T}^{\rm H}) = \sum_i v_1^i(p_{\rm T}^i)$$

$$\Delta v_1 \equiv v_1^L - v_1^R = \sum_{i=\bar{u},\bar{d},s,\bar{s}} \Delta N_i v_{1,\bar{u}}$$

$$\Delta v_1 = (v_{1,\bar{d}} - v_{1,\bar{u}}) \Delta q + \left(\frac{v_{1,\bar{s}} - v_{1,\bar{s}}}{2}\right)$$

$$\Delta \mathbf{v}_1 = \mathbf{c}_q^* \Delta \mathbf{q} + \mathbf{c}_s^* \Delta \mathbf{S}$$

R (right side) $v_1[ar p(ar uar uar d)]+v_1[\phi(sar s)]$ $[\bar{p}(\bar{u}\bar{u}\bar{d})] + \frac{1}{2}v_1[\overline{\Xi}^+(\overline{d}\bar{s}\bar{s})]$ $v_1[\phi(sar{s})]$ $rac{1}{3}v_1[\Omega^-(sss)]$ $v_1ig[K^-(ar us)ig]$ $v_1[\phi(s\bar{s})] + rac{2}{3}v_1[ar{p}(ar{u}ar{u}ar{d})]$

The differences between the two sides in electric charge, strangeness and baryon number are given by:

$$\Delta q \equiv q^{L} - q^{R} = \Delta N_{\bar{d}} + \frac{2}{3}$$
$$\Delta S \equiv S^{L} - S^{R} = 2\Delta N_{\bar{s}}$$

ATHIC-2025, IISER-Berhampur, Odisha

Extraction coefficients

$$\Delta q_{ud} \equiv q_{ud}^L - q_{ud}^R = \Delta q + \frac{1}{3}\Delta S$$

 $\Delta B \equiv -\frac{1}{3}\Delta S$

 $\Delta v_1 = c_q \Delta q_{ud} + c_B \Delta B + c_0$

STAR Collaboration, arXiv:2304.02831 (2023)

Set/Index #	Δq	Δq_{ud}	ΔS	ΔB	Left side	Right side
Index 1	0	0	0	0	$v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$	$v_1[K^-(\bar{u}s)] + v_1[\overline{\Lambda}(\bar{u}\bar{d}\bar{s})]$
Index 2	1	1/3	2	-2/3	$v_1[\overline{\Lambda}(\bar{u}\bar{d}\bar{s})]$	$\frac{1}{3}v_1[\Omega^-(sss)] + \frac{2}{3}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})]$
Index 3	4/3	2/3	2	-2/3	$v_1[\overline{\Lambda}(\bar{u}\bar{d}\bar{s})]$	$v_1[K^-(\bar{u}s)] + \frac{1}{3}v_1[\bar{p}(\bar{u}\bar{u}\bar{d})]$
Index 4	2	0	6	-2	$v_1[\overline{\Omega}^+(\bar{s}\bar{s}\bar{s})]$	$v_1[\Omega^-(sss)]$
Index 5	7/3	1	4	-4/3	$v_1[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})]$	$v_1[K^-(\bar{u}s)] + \frac{1}{3}v_1[\Omega^-(sss)]$

Hence, CSR predicts:

 $\Box \Delta v_1$ depends linearly on both Δq and ΔS

 \mathbf{V} Coefficients reflect quark-level v₁ difference for quarks of different electric charges →Affected by EMF

Coefficients vs $\sqrt{S_{NN}}$

 \checkmark The c_s and c_s^* coefficients are different i.e more sensitive unlike $c_0(c_0^*)$ and $c_q(c_q^*)$

Coefficients vs $\sqrt{S_{NN}}$

ATHIC-2025, IISER-Berhampur, Odisha

System Size Dependence v₁

Dependence of Δv_1 **on Conserved Charges**

equations and collision beam energies.

Summary

- \checkmark v₁-study is performed to in O+O, Cu+Cu, Zr+Zr, Ru+Ru, Au+Au, U+U collisions for
 - understanding the system size dependence in the AMPT model at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- \checkmark A system size independence v₁-slope (dv₁/dy) is found for charged hadron at low- p_T
- \checkmark Centrality and *p*_T-dependent v₁-slope suggests the effect of initial hard-soft asymmetry

- $\star \Delta v_1$ -slope is very sensitive to the change in electric charge, strangeness content, choice of
- \star The non-zero Δv_1 for non-identical set of equations suggests that v_1 -splitting not may only
 - be driven by electromagnetic effect \rightarrow Strangeness of hadron might play important role

