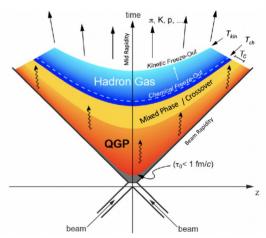
Study of identified particle production in high multiplicity pp collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Navneet Kumar
(On behalf of the ALICE Collaboration)
Panjab University,
Chandigarh

Outline

- Introduction & Motivation
- ALICE detector
- Analysis details
- Results and discussion
- Summary

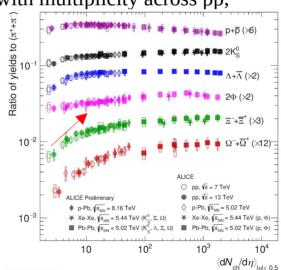
Introduction & Motivation



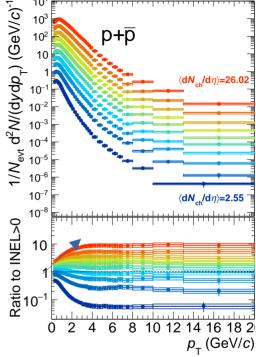
Quark-Gluon plasma (QGP): Hot and dense phase of matter having deconfined quarks and gluons.

QGP formation at the LHC energy in AA collisions has been confirmed.

Space-time evolution of heavy-ion collisions



Introduction & Motivation

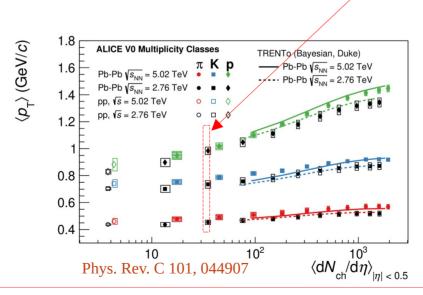


Why study identified hadrons in small systems?

- > Used as a tool to understand the particle production mechanism.
- Hardening of the transverse momentum (p_T) spectra / increase of $< p_T >$ with multiplicity in pp collisions similar to heavy-ion collisions.
 - Collective expansion / radial flow.
- Smooth evolution of charged particles production with multiplicity across pp,
 - pA, AA systems and saturation.
 - Independent of collision system and energy
 - Stronger increase in the strange particleto-pion ratio is observed with increasing strangeness content.

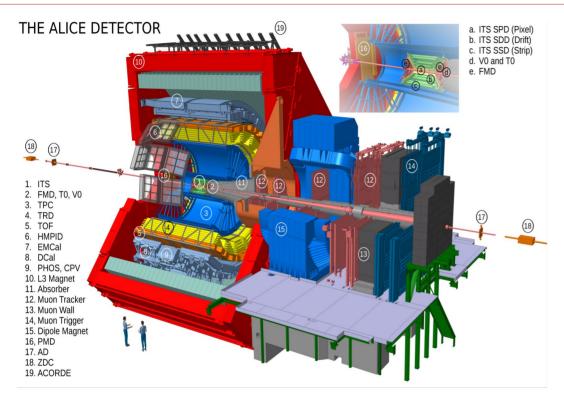
ncreasing multiplicity

Eur. Phys. J.C (2020) 80:693



Introduction & Motivation

Why high-multiplicity pp collisions?


- → High-multiplicities in pp collisions at the LHC are comparable to those in p—Pb and peripheral Pb—Pb collisions.
- > pp collisions with high multiplicities are useful for comparing different systems.
- ► This study will extend our understanding of pp collisions to $\langle dN_{ch}/d\eta \rangle = 35.8$.

ALICE detector in Run 2

Forward detector (V0): V0A (2.8< η < 5.1) & V0C (-3.7< η <-1.7)

• Trigger, Multiplicity estimator

Inner Tracking System (ITS) $|\eta| < 0.9$:

- Primary Vertex
- Tracking
- Particle Identification (PID) at low momentum

Time Projection Chamber (TPC) $|\eta| < 0.8$:

- Tracking
- PID

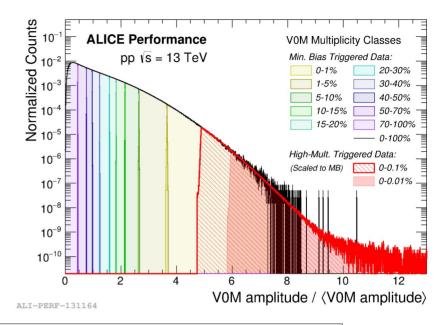
Time of Flight (TOF) $|\eta| < 0.9$:

• PID

Analysis details

• pp collisions @ \sqrt{s} =13 TeV

• Year: 2016

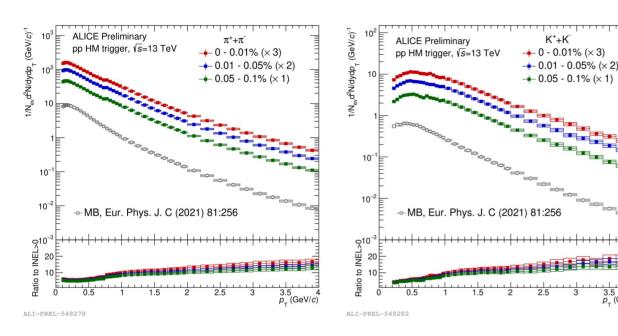

• Particles studied: π , K and p

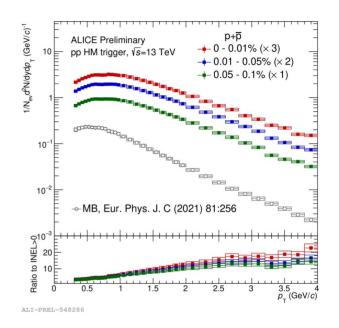
Event and track selection

- The data were recorded using high-multiplicity triggers.
- Standard track selection cuts are applied to ensure good quality of selected tracks.

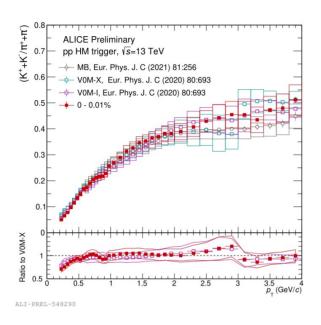
Multiplicity classes (in %)

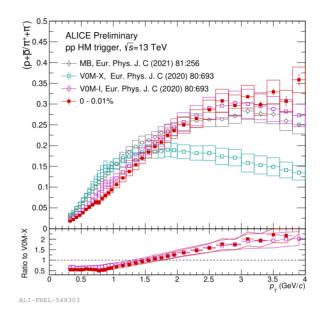
0-0.01(HM1), 0.01-0.05(HM2), 0.05-0.1(HM3)


Analysis Region			
	$p_{\scriptscriptstyle extsf{T}}$ (GeV/c)		
	π	K	р
ITSsa	0.1-0.75	0.2-0.6	0.3-0.7
TPC-TOF	0.6-4.0	0.6-4.0	0.7-4.0

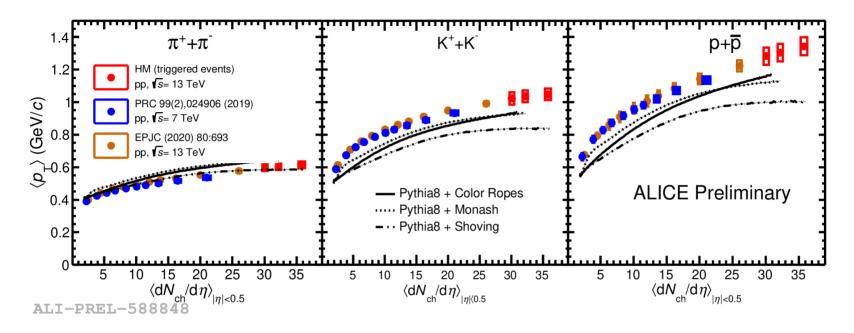


Transverse Momentum Spectra




- Multiplicity dependent hardening is observed.
- \triangleright The hardening of the p_T spectra with multiplicity is more pronounced for the heavier particles.
- p_T spectra of π, K and p for pp, @ \sqrt{s} =13 TeV high multiplicity (HM) classes follow the trend of the published results.

Particle ratios (K/ π and p/ π)

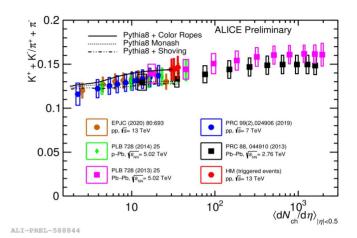


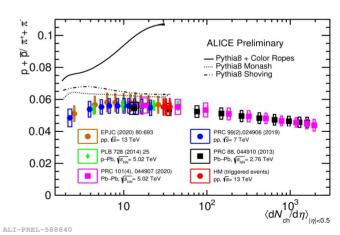
- \sim K/ π and p/ π for HM1 (0-0.01%) multiplicity class are compared among different published pp events.
- \triangleright High-multiplicity events shows the similar trends as compared with published V0M-I (0-0.92%) class.
- The ratio to V0M-X (64.5-100%) class shows a suppression of p/π ratio at low- p_T and enhancement at high- p_T (radial flow).

Multiplicity dependent average transverse momentum

- \triangleright The new results of $< p_T >$ shows an increasing trend with the charged particle multiplicity.
- \triangleright The increase is steeper with mass supports the picture of the collective evolution (radial flow).
- \triangleright The model qualitatively explains the multiplicity dependent trend of $\langle p_T \rangle$ for pions, kaons and protons.
- Quantitatively, pion $\langle p_T \rangle$ trend is well explained (by Pythia8 Shoving) but the kaon and proton are underestimated by the models.

Multiplicity dependent K/π and p/π ratios


- New measurements have extended the range of K/π and p/π ratios in pp collision to the high multiplicity i.e. $< dN_{ch}/d\eta > = 35.8$.
- Increasing trend in the K/π ratio:


Strangeness enhancement?

Pecreasing trend in the p/π ratio: antibaryon-baryon annihilation.

Physics Letters B 835, 137577 (2022)

- Smooth transition of ratio of the particles from pp to Pb-Pb collisions.
- The High-multiplicity results confirm the trends:
 Particle production is driven by the multiplicity, not by the system nor energy.
- P Quantitative description of the K/π ratio is given by MC generator (Pythia8).
- Pythia8 with ropes are inconsistent with the measured multiplicity dependent p/π ratios.

Summary

- New results of π , K and p production as a function of transverse momentum in high-multiplicity pp collisions are presented.
- New measurements of high-multiplicity pp events extended the study in pp collisions to $\langle dN_{ch}/d\eta \rangle = 35.8$.
- ► Multiplicity-dependent hardening is observed, and it is more pronounced for heavier particles → Radial flow.
- Measured p_T —integrated particles yield ratios and $\langle p_T \rangle$ are consistent with the published multiplicity dependent trends by ALICE and show a smooth transition across different collision system sizes and energies, \longrightarrow hadron chemisty is driven by the multiplicity, not by the collison system nor energy.
- High-multiplicity collisions in small systems exhibit similar features as AA collisions.
- The predictions from MC generators quantitatively describe the K/π ratio, while qualitatively explaining the multiplicity-dependent $\langle p_T \rangle$ distrution of pions, kaons and protons. However, Pythia8 with Color Ropes overestimate the p/π ratio.

Thank you for your attention