UNIVERSITÄT BIELEFELD

Quarkonia Spectral Function at Finite Momenta

Pavan* Dibyendu Bala, Olaf Kaczmarek Bielefeld University

ATHIC 2025, Berhampur, January 13 - 16, 2025

CMS Collaboration, PLB 790 (2019) 270

Wilson-line Correlators The expectation of Wilson loop is given as $C_E(\tau, r) \equiv \frac{1}{N_o} \operatorname{Tr} \left\langle W[(0, \mathbf{0}); (\tau, \mathbf{0}); (\tau, \mathbf{r}); (0, \mathbf{r}); (0, \mathbf{0})] \right\rangle_{\tau}$ $W[X_1, X_2] = \mathscr{P} \exp\left[ig \int_{X_1}^{X_2} A_{\mu} dX_{\mu}\right]$ (τ, **0**) (0, r)(0, 0)

We need analytical continuation for this euclidean time quantity. The potential can be extracted by following relation $i\partial_t C_{>}(t,r,r') \equiv V_{>}(t,r) C_{>}(t,r,r')$

M. Laine et at., JHEP03 (2007) 054

Spectral function at zero-momenta

In the presence of the interaction

$$\left\{ i\partial_t - \left[2M - \frac{\nabla_{\vec{r}}^2}{M} + V_T(r) \right] \right\} C_{>}(t;\vec{r},\vec{r}') = 0 \qquad C_{>}(0,\vec{r},\vec{r}') = 6\,\delta^3(\vec{r}-\vec{r}')$$

where V_T is defined in static limit

$$V_T(r) = i \lim_{t \to \infty} \frac{\partial \log W(r, t)}{\partial t} = V_{re}(r) - iV_{im}(r)$$

The spectral function is related to the Fourier transform of $C_{>}(\vec{r}, \vec{r}', t)$

$$\rho(\omega) \propto \lim_{\vec{r} \to 0} \lim_{\vec{r}' \to 0} \int_{-\infty}^{\infty} d\omega C_{\geq}$$

Which is related to lattice correlators in following fashion

$$C(\tau) = \int_0^\infty \frac{d\omega}{\pi} \rho(\omega) \frac{\cosh[}{\sin \omega}$$

M. Laine et at., JHEP03 (2007) 054

 $r_{>}(\vec{r},\vec{r}',t) \exp(i\omega t)$

ollowing fashio $\left[\omega(\tau - \frac{1}{2T})\right]$ $\sinh\left[\frac{\omega}{2T}\right]$

Potential at zero-momenta

We have used following parametrisation to extract the thermal static potential $W(r,\tau) = A \exp\left(-V_{re}(r)\tau + \frac{V_{im}(r)}{\pi T}\log\left(\pi \tau T\right) + \dots\right)$

The imaginary part increases with both temperature and distance

Spectral Function at zero-momenta

Matched spectral function with vacuum part

Spectral function is not Gaussian around the peak

Spectral function of η_c , $M = 2.97 \pm 0.02$ GeV

Wilson loop at finite-momenta

At zero-momenta the expectation of Wilson loop is given as

$$C_E(\tau, v_E, r_\perp) \equiv \frac{1}{N_c} \operatorname{Tr} \Big\langle W \big[(0, \mathbf{0}); \, (\tau, \mathbf{0}); \, (\tau, \mathbf{r}); \,$$

$$W[X_1, X_2] = \mathscr{P} \exp\left[i g \int_{X_1}^{X_2} A_{\mu} dX_{\mu}\right]$$

Spectral function at finite-momenta

Finite momentum modifies the Schrödinger equation in following fashion

$$\begin{cases} i \partial_t - \left[2M\sqrt{1 + \frac{\lambda^2}{4}} - \frac{1}{\left(1 + \frac{\lambda^2}{4}\right)^{\frac{3}{2}}} \frac{\nabla^2}{M} + V_T(r_\perp, r_\parallel, v) \right] \end{cases} C_>(t, \vec{q}, \vec{r}) = 0 \\ C_>(0, \vec{q}, \vec{r}) = -\frac{24N_c}{4 + \lambda^2} \delta^3(\vec{r}) \qquad v_q = \frac{q}{\sqrt{q^2 + 4M^2}} \end{cases}$$

 λ parameterises the momentum and given as $\lambda = q/M$ We follow the same procedure as zero momentum after onwards.

Potential at finite-momenta

We have plotted this potential considering only the contributions from the transverse component.

This is perturbative potential calculated up to order g^2 in coupling.

The real part of potential gets contribution from transverse part of spectral function.

Spectral function at finite-momenta

The spectral function in intermediate region

We have considered only the transverse motion to simplify the solution of the Schrödinger equation.

The peak of spectral function decreases with increasing momenta.

$$\omega \sim \sqrt{4M^2 + q^2}$$

 $\pi/2$

. 1/

Conclusion and Outlook

We solved the Schrödinger equation to extract the spectral function in intermediate region and matched with perturbative UV part for zero momenta.

In finite momenta, the real part of potential gets contribution from transverse part of spectral function that is not case at zero momenta.

We observed that both real and imaginary contribution of potential increases with increasing momenta.

We are working on extracting potential and spectral function considering both longitudinal and transverse motions.

We also want to extend the finite momenta perturbative analysis on lattice by calculating the Wilson-line correlators.

