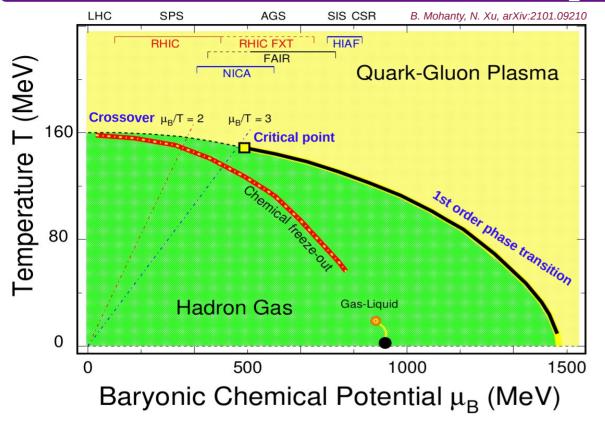
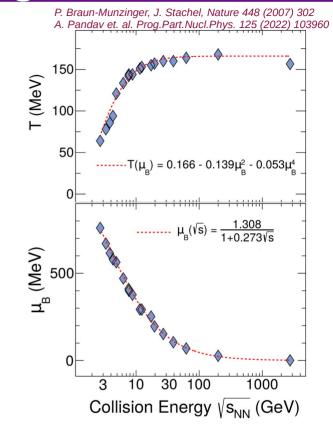
Precision Measurement of (Net-)proton Number Fluctuations in Au+Au Collisions from BES-II Program at RHIC-STAR

Bappaditya Mondal for the STAR Collaboration

National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India 13th - 16th Jan, 2025

In part supported by




Outline:

- 1) Introduction : QCD Phase Diagram
- 2) Observables
- 3) Analysis details
- 4) Results
- 5) Summary and Outlook

Introduction- QCD phase diagram

- Goal: To study QCD phase diagram -> search for Critical Point (CP).
- Scan: Varying collision energy changes Temperature (T) and Baryon Chemical Potential (μ,).
- Observables: Fluctuation of conserved quantities are sensitive observables to study QCD phase diagram.

Observables

Higher order cumulants of (net-) proton multiplicity distribution

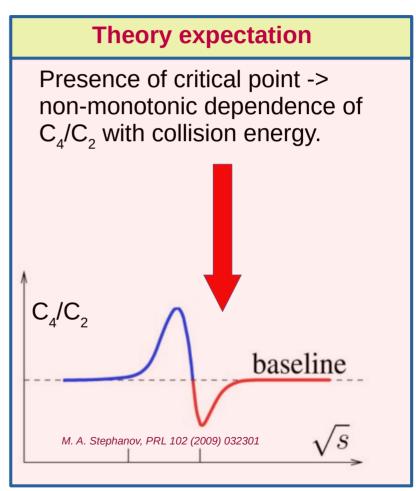
 $\kappa_1 = C_1$

Cumulants

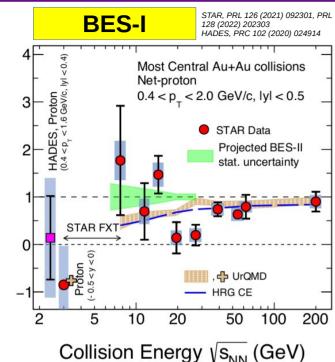
$$C_1 = \langle N \rangle$$
 $C_2 = \langle (\delta N)^2 \rangle$ here, $\delta N = N - \langle N \rangle$
 $C_3 = \langle (\delta N)^3 \rangle$
 $C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Factorial Cumulants

$$\kappa_{2} = -C_{1} + C_{2}$$

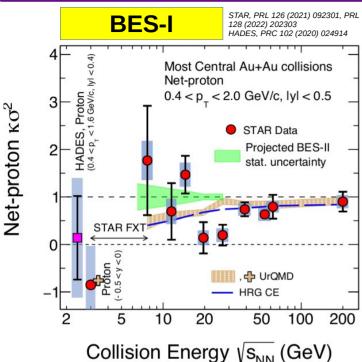

$$\kappa_{3} = 2C_{1} - 3C_{2} + C_{3}$$

$$\kappa_{3} = -6C_{1} + 11C_{2} - 6C_{3} + C_{3}$$

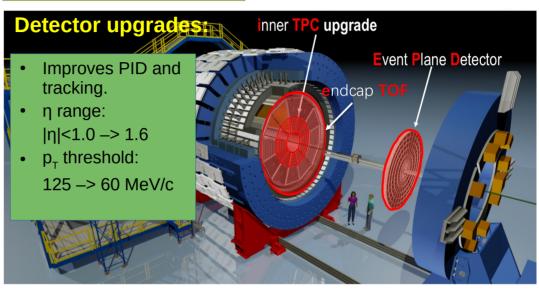

$$\kappa_4 = -6\,C_1 + 11\,C_2 - 6\,C_3 + C_4$$

- Related to correlation length: $C_2 \sim \xi^2$ $C_4 \sim \xi^7$ finite size/time effects reduce ξ Higher order -> More sensitive
- Related to Susceptibility: $\frac{C_4}{C_2} = \kappa \sigma^2 = \frac{\chi^{(4)}}{\chi^{(2)}}$ Comparison with models

Gupta, Luo, Mohanty, Ritter, Xu, Science 332 (2011) R.V. Gavai and S. Gupta, PLB696, 459(2011) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(2006)


Result from BES-I and upgrades in BES-II

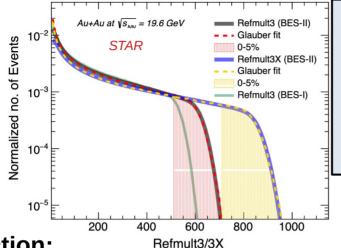
Net-proton κσ²


- Fluctuation relative to Poisson baseline.
- ✓ Precision measurement needed at lower energies: BES-II (7.7 27 GeV)
- ✓ To reach even lower energies $(\sqrt{s_{NN}} = 3.0 7.7 \, GeV)$: **FXT** program. Up to 3 GeV.

Result from BES-I and upgrades in BES-II

- Fluctuation relative to Poisson baseline.
- ✓ Precision measurement needed at lower energies: BES-II (7.7 27 GeV)
- ✓ To reach even lower energies $(\sqrt{s_{NN}} = 3.0 7.7 \, GeV)$: **FXT** program. Up to 3 GeV.

Upgrades in BES-II



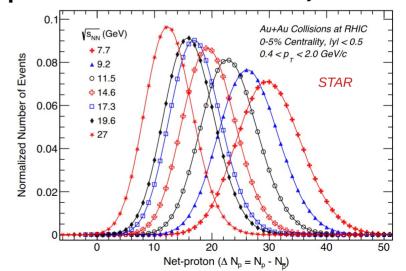
Improvement in statistics:

$\sqrt{s_{NN}(GeV)}$	7.7	9.2	11.5	14.5	17.3	19.6	27
$\mu_{\scriptscriptstyle B}(MeV)$	420	372	316	262	230	206	156
Events BES-I (10 ⁶)	3	-	7	20	-	15	30
Events BES-II (10 ⁶)	45	78	110	178	116	270	220

Centrality, PID & net-proton distribution

centrality:

- 1. RefMult3: Charge particles excluding protons/ anti protons within |n|<1.0
- 2. RefMult3X: Charge particles excluding protons/ anti protons within $|\eta|$ <1.6
- 3. Centrality resolution:


RefMult3X (BES-II) > RefMult3 (BES-II) > RefMult3 (BES-I)

- Proton selection:
- **1.** TPC and TOF used. **2.** kinematic range: $0.4 < p_T$ (GeV/c) <2.0 and |y| < 0.5 **3.** purity for proton and anti proton > 99%

Acceptance: V > 0: $V_z \in (48, 50)$ cm V < 0: $V_z \in (-50, -48)$ cm

(anti)proton rapidity y

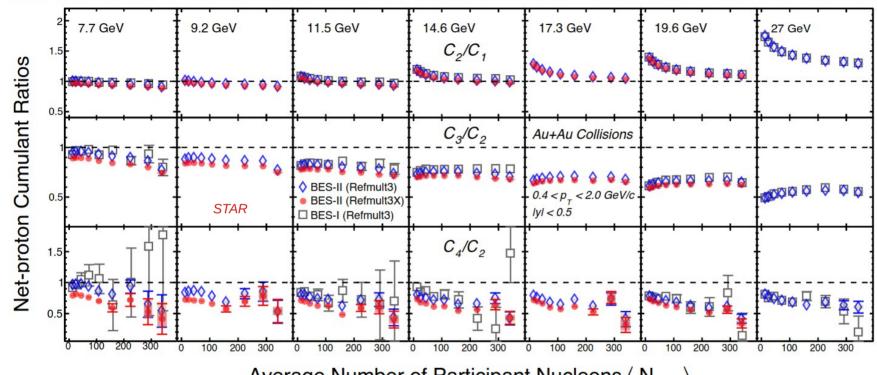
*Net-proton distribution: Efficiency uncorrected

Precision of measurements

Percentage statistical and systematic error in net-proton cumulant ratios in 0-5% centrality

$\sqrt{s_{_{NN}}}$	7.7 GeV		19.6 GeV		
	% stat. err	% sys. err	% stat. err	% sys. err	
C ₂ /C ₁	0.1%	0.3%	0.06%	0.3%	
C ₃ /C ₂	2.1%	1.3%	0.7%	1%	
C ₄ /C ₂	61%	29%	22%	11%	

Systematic uncertainty estimation: by varying criteria for track selection, particle identification (PID) and reconstruction efficiencies.


Reduction factor in uncertainties in 0-5% C_4/C_2 : BES-II vs BES-I

7.7 GeV		19.6 GeV		
stat. err	sys.err	stat. err	sys. err	
4.7	3.2	4.5	4	

Precision measurement.
Better quality of data.
Better statistical precision.
Better control on systematics.

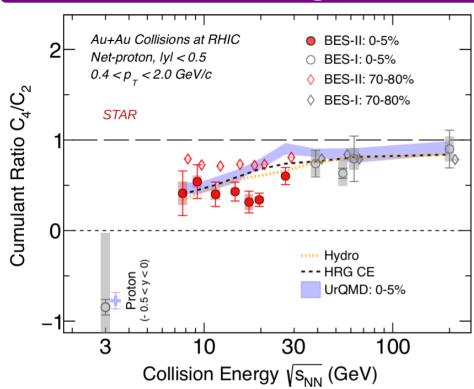
Results

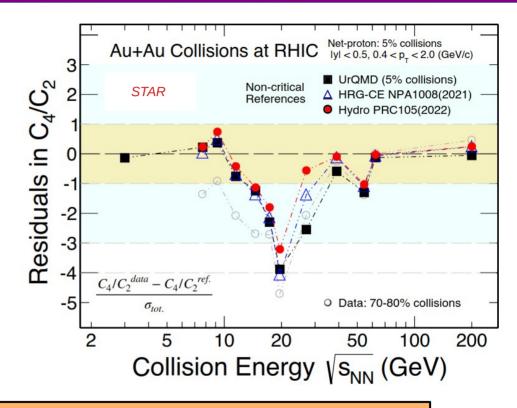
Centrality dependence: net-proton cumulant ratios

- ✓ Efficiency corrected (detector efficiency & PID efficiency) cumulants
- ✓ Statistical error using bootstrap method

- Average Number of Participant Nucleons (N part)
- ullet Smooth variation of cumulant ratios over centrality and collision energy $(\sqrt{s_{\mathit{NN}}})$
- Higher centrality resolution: lower ratios (especially mid central collisions) RefMult3X (BES-II) > RefMult3 (BES-II) > RefMult3 (BES-I)
- Weak effect of centrality resolution: for 0-5% centrality

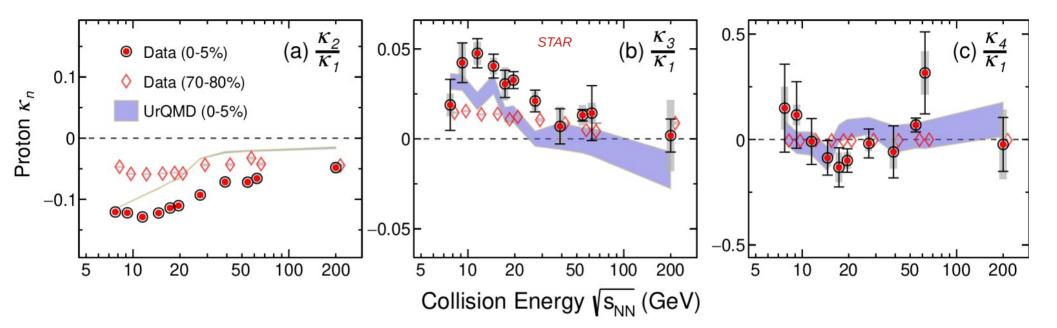
C₄/C₂ energy dependence: BES-I vs BES-II

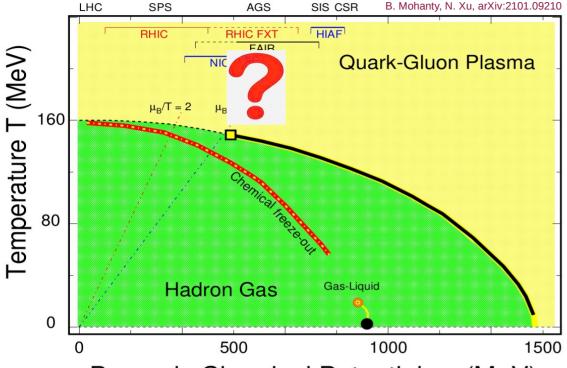



Deviation between BES-I and BES-II:

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%
7.7	1.0σ	0.9σ
11.5	0.4σ	1.3σ
14.6	2.2σ	2.5σ
19.6	0.7σ	0.0σ
27	1.4σ	0.2σ

- BES-II consistent with BES-I within uncertainties.
- Significantly improved precision.


Quantification of deviation


- Non-CP Models: Hydro, HRG-CE, UrQMD (All models include baryon number conservation).
- **⇔** C₄/C₂ shows minimum around ~20 GeV comparing to non-CP models, 70-80% data.
- **Maximum deviation: 3.2 4.7\sigma** at 20 GeV (1.3 2 σ at BES-I).

Energy dependence: proton factorial cumulant ratios

- Deviate from poisson baseline at 0.
- Peripheral results (70-80%) closer to 0.
- UrQMD does not fully describe the data.

Summary

Baryonic Chemical Potential μ_{R} (MeV)

- **Precision measurements** from BES-II collider energies $(\sqrt{S_{NM}})$ 7.7 27 GeV.
- Better statistical precision, better centrality resolution, better control on systematics.
- Maximum deviation for 0-5% C_4/C_2 w.r.t various non-CP models and 70-80% data is observed at $\sqrt{s_{NN}}$ = 20 GeV (μ_B ~ 206 MeV) at a level of 3.2 4.7σ
- Information of high moment of protons at larger baryon density or lower collision energy is needed in order to pin down the possible existence of the QCD critical point.

Outlook:

- Similar studies for Au+Au collision at fixed target (FXT) energies are being carried out.
- Studies of higher order fluctuation (C_5 , C_6 , κ_5 , κ_6)
- \bullet p_T & y dependence study.