Measurement of collective flow D⁰ meson in heavy ion collisions at CMS

Nihar Ranjan Saha

Indian Institute of Technology Madras

10th Asian Triangle Heavy-Ion Conference 2025 | 13-16 January | Berhampur, Odisha |

Production:LightHeavy \succ Heavy quarks are produced via hard scattering in the initial
stage of the collisions (~0.1 fm/c).vs \checkmark \succ Production rates can be calculated by pQCD(u, d, s)(c, b, t)

*

Production:

- Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c).
- Production rates can be calculated by pQCD
- > Higher penetrating power: $m_Q >> T_c$, Λ_{QCD}

Energy loss mechanism:

- ➤ Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process.
 Significant at higher energy.
- > **Collisional:** Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy.

Production:

- Heavy quarks are produced via hard scattering in the initial stage of the collisions (~0.1 fm/c).
- Production rates can be calculated by pQCD
- > Higher penetrating power: $m_Q >> T_c$, Λ_{QCD}

Energy loss mechanism:

- ➤ Radiative: Loss energy by via inelastic $Q \rightarrow Qg$ process.
 Significant at higher energy.
- > **Collisional:** Transfer energy via elastic $Qq \rightarrow Qq$ process. Significant at lower energy.

Azimuthal anisotropy (collective flow):

- Initial state geometry and fluctuation.
- Path-dependent parton energy loss.

Azimuthal anisotropy

Pressure gradient generates collective flow anisotropy in momentum space!

Azimuthal anisotropy

$$rac{dN}{d\phi} \propto 1 + \sum_{n} 2 v_n \cos n \left(\phi - \Psi_n
ight)$$
 $v_n = < 2 \cos n \left(\phi - \psi_n
ight) >$

Pressure gradient generates collective flow anisotropy in momentum space!

- → Is heavy-quarks elliptic flow non-zero?
- → Is it similar to that of light flavor?
- → How do heavy quarks couple with the bulk medium?

Azimuthal anisotropy

• Anisotropy coefficient, v_n

$$egin{aligned} rac{dN}{d\phi} & \propto 1 + \sum_n 2 \mathrm{v_n} \cos n ig(\phi - \Psi_n ig) \ v_n = &< 2 cos \ n (\phi - \psi_n) > \end{aligned}$$

$$v_2 \rightarrow \text{Elliptic flow} \rightarrow \text{Initial state geometry}$$

 $v_3 \rightarrow \text{Triangular flow} \rightarrow \text{Initial state fluctuation}$

Pressure gradient generates collective flow anisotropy in momentum space!

- → Is heavy-quarks elliptic flow non-zero?
- → Is it similar to that of light flavor?
- → How do heavy quarks couple with the bulk medium?

We can probe:

- → Transport properties of medium
- → Hadronization mechanism
- → Path-length dependent parton energy loss

Prompt D⁰

Why D⁰ meson?

- ~40% of all prompt charm hadrons are D^0 mesons.
- Best avenue for charm quark properties. \succ

Non-Prompt D⁰

- ~55% of all b hadrons decay to D^0 mesons.
- Great possibilities for b quark studies. \succ

Reconstruction

- > Used PbPb data at $\sqrt{S_{NN}}$ = 5.02 TeV.
- ▶ Inclusive D^0 reconstruction $D^0 \to K^- \pi^+$
- No dedicated PID.
- All opposite charge track pairs combinations.
- Boosted Decision Tree (BDT) for background suppression.

Inclusive D⁰ yield

- > Signal mass \rightarrow Double gaussian
- > Swap component \rightarrow Gaussian
- $\succ \quad K^+K^- \& \pi^+ \pi^- \to \text{Crystal ball functions}$

PLB 850 (2024)138389

Q-vector:
$$\vec{Q}_m = \left(\sum_{i}^{M} w_i \cos\left(m\phi_i\right) - \left\langle\sum_{i}^{M} w_i \cos\left(m\phi_i\right)\right\rangle, \sum_{i}^{M} w_i \sin\left(m\phi_i\right) - \left\langle\sum_{i}^{M} w_i \sin\left(m\phi_i\right)\right\rangle\right)$$

Large η gap $|\Delta \eta| > 3.0$ applied to remove non-flow effects.

Results: Prompt $D^0 v_n$

- Strong p_T and centrality dependence for v_2
- Positive v_2 at higher p_T indicates path-dependent energy loss of charm quarks.
- Significant nonzero v_3 up to ~10 GeV, indicates initial state fluctuation.

Results: Model comparison

- Comparison with charge hadrons shows mass hierarchy.
- Qualitative agreement with model predictions.

Results: Non-prompt $\mathbf{D}^0 v_n$

First measurement of $b \rightarrow D^0$ anisotropy in PbPb collisions

- Mass ordering of flow magnitudes.
- Weak p_T and centrality dependence for v_2 .
- Indication of non-zero v_3

Results: Model comparison

- Qualitatively good agreement between theory and data.
- Different models describe data for different p_{τ} ranges.

Measurement of prompt D⁰

- > We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- > Strong p_T and centrality dependence are observed for v_2 .
- > Non-zero v_3 is also observed, indicates initial state fluctuation.
- Qualitative agreement with theoretical models.

Measurement of prompt D⁰

- > We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- > Strong p_T and centrality dependence are observed for v_2 .
- > Non-zero v_3 is also observed, indicates initial state fluctuation.
- Qualitative agreement with theoretical models.

Measurement of Non-prompt D⁰

- > We have measured elliptic flow (v_2) and triangular flow (v_3) in three different centrality ranges.
- > Weak p_T and centrality dependence are observed for v_2 .
- > Indication of non-zero v_3
- Qualitative agreement with theoretical models.

- ✤ Ds anisotropy ➡ Impact of hadronization on Charm flow!
- ★ Λ_c anisotropy → Charm flow in baryonic form!

Solution on Charm flow!
★ Λ_c anisotropy → Charm flow in baryonic form!

Backup

CUJET 3.0: A pQCD-based jet energy loss model with a color-magnetic monopole medium for heavy quarks in QGP.

PHSD: An off-shell transport model with dynamical quarks and gluons for non-equilibrium heavy quark dynamics in QGP.

TAMU: A non-perturbative T-matrix model describing heavy quark diffusion via strong interactions in QGP.

LBT: A pQCD-based Boltzmann transport model simulating heavy quark scattering in QGP.

LGR: Langevin framework for heavy quark dynamics with strong coupling in a gluon-rich QGP.

SUBATECH: Hydro-kinetic or Langevin model focusing on drag and diffusion of heavy quarks in QGP.