

Exploring Event-by-Event p_T Fluctuations in pp Collisions at $\sqrt{s}=13$ TeV: Insights from ALICE

<u>Bushra Ali</u>

(for the ALICE Collaboration) Department of Physics, Aligarh Muslim University, Aligarh

with: Sumit Basu Shakeel Ahmad Tapan Nayak (presentor)

10th Asian Triangle Heavy-Ion Conference IISER Berhampur, Odisha, India Jan 13-16, 2025

Introduction: Mean *p*_T fluctuations

- → Fluctuations of a thermal system are directly related to its various susceptibilities.
- → The extraction of the system heat capacity from temperature fluctuations

$$\frac{1}{C} = \frac{(\Delta T^2)}{T^2}$$

 \rightarrow The $p_{\rm T}$ correlations can be formulated in terms of the fluctuations in the effective temperature as

$$\langle \Delta p_{\mathrm{T}} \Delta p_{\mathrm{T}} \rangle \approx \left[\frac{d \langle p_{\mathrm{T}} \rangle}{dT} \right]^2 \Delta T^2$$

• Non-monotonic changes in p_T correlations with beam energy and/or centrality can be identified as a possible signal of QGP formation.

STAR Collaboration, Phys. Rev. C87, (2013) 064902; Sumit Basu et al, Phys. Rev. C94 (2016) 044901; B-H Sa et al, Phys. Rev. 75 (2007) 054912

Introduction

Mean *p*_T **fluctuations**

(centrality and collision energy dependences)

• Significant dynamical mean p_T fluctuations are observed in heavy-ion collisions.

STAR Collaboration, Phys. Rev. C 72, 044902 (2005)

Kinematic acceptance: $0.15 < p_T < 2.0 \text{ GeV}/c, |\eta| < 1.0$

ATHIC'25

Introduction

Mean *p*_T **fluctuations**

(System size and collision energy dependences)

- In heavy-ion collisions, the mean p_T fluctuation strength is observed to be ~ 1%
- In pp collisions, the strength is $\sim 11\%$

Mean *p*_T **fluctuations**

(as a function of multiplicity)

- → The correlation strength is inversely proportional to the number of sources;
- → A similar trend is observed from pp to Pb–Pb collisions;
- → Motivation (I): to look at high-multiplicity pp events.

C_m : The two-particle p_T correlator

The two-particle correlator *C* measures the dynamic component of mean transverse momentum fluctuations. In a multiplicity class *m*, the correlator is expressed as:

$$C_{m} = \frac{1}{\sum_{k=1}^{n_{evt},m} N_{k}^{pairs}} \sum_{k=1}^{n_{evt},m} \sum_{i=1}^{N_{acc},k} \sum_{j=i+1}^{N_{acc},k} (p_{T,i} - M(p_{T})_{m}) * (p_{T,j} - M(p_{T})_{m})$$

Mean *p*_T of the sample:
$$M(p_{T})_{m} = \frac{1}{\sum_{k=1}^{n_{evt},m} N_{acc,k}} \sum_{k=1}^{n_{evt},m} \sum_{i=1}^{N_{acc,k}} p_{T,i}$$

Terminology:

$$\frac{\text{ALICE}}{\sqrt{C_{\text{m}}/M(p_{\text{T}})_{\text{m}}}} \approx \sqrt{\langle \Delta p_{\text{T},i} \Delta p_{\text{T},j} \rangle / \langle \langle p_{\text{T}} \rangle \rangle}$$

Equivalent to *R* Relative fluctuation measure used at ISR energies

C_m : high multiplicity pp events at 13 TeV (LHC) Comparison with lower energy datasets

- → No significant energy dependence
- The relative fluctuation strength ~ 11%

Results

C_m : The two-particle p_T correlator at higher p_T

A study of soft, intermediate and hard p_T would significantly impact on understanding the equilibrations and thermal (radial flow) - non thermal (jets/minijets) sources for p_T fluctuations.

Correlator for higher *p***_T (and** *p***_T windows)** (as a function of multiplicity)

Case 1 [0.15, 0.15+ Δp_T] Increase in correlation by including higher p_T particles Case 2 Fixed δp_T Effect of minijets show up in larger p_T windows

ATHIC'25

•

Mean *p***T** (as a function of multiplicity)

ATHIC'25

Results

Correlator with respect to mean $p_{\rm T}$

Case 1 [0.15, 0.15+ Δp_T] Increase in correlation with increase in mean p_T

Case 2 Fixed δp_T Correlation goes down with increase of p_T

ATHIC'25

Correlator for higher *p***T windows:** PYTHIA and EPOS comparison

→ PYTHIA8 (Monash) and EPOS describe the data qualitatively.

- \rightarrow As the *p*_T window increases:
 - → PYTHIA agrees qualitatively with the data.
 - → EPOS show qualitative disagreement with data.

Correlator for higher *p***T windows:** PYTHIA and EPOS comparison

13

Correlator for higher *p***T windows:** PYTHIA and EPOS comparison

 \rightarrow In high $p_{\rm T}$ acceptance, better agreement between the data and models.

Comparison with superposition principle

- → Power-law fit of the form $a^*(N_{ch})^b$ is performed.
- Increasing the p_T window, the system tends to depart from the superposition scenario.
 - For pp at $\sqrt{s} = 13$ TeV (with HM triggered events), $b = -0.404 \pm 0.001$ (stat.)

Summary and outlook

- Mean p_T correlation strength for pp collisions at $\sqrt{s} = 13$ TeV: for both minimum bias and highmultiplicity triggered events show decrease in correlation with increasing multiplicity.
- → For a given N_{ch} , correlator increases with widening of the p_T acceptance window but decreases when p_T window is within high p_T limits.
- → PYTHIA (pQCD-inspired) describes the data quantitatively, suggesting hard processes are the dominant sources for mean p_T fluctuations.
- → For a wider range of p_T windows (0.15 \leftrightarrow 0.15+ Δp_T), the variations of *b* (power-index parameter) show that the system moves farther away from expectation from the superposition principle (independent sources).
- → Outlook: To further understand the factors affecting correlation strength, future investigations could compare the correlator across various systems (pp, p–Pb, Xe–Xe, and Pb–Pb) at common multiplicity ranges, helping to discern the roles of mean p_T and multiplicity.

Thank you for your attention

Back Ups...

ATHIC'25

The High-multiplicity trigger

Trigger is a bais introduced during data collection.

- → The kHighMultV0 trigger is based on the average V0 amplitude → tuned such that only 0.1% central minimum bias events are recorded.
- Why do we need it? \rightarrow to enhance high multiplicity region.