Unveiling Initial State Fluctuation Using $[p_T]$ Cumulants with ATLAS

Somadutta Bhatta Stony Brook University

Relativistic Heavy-Ion Collisions

Understanding Initial State

Understanding Initial State

History : Components of p_T from particle spectra

For radially expanding medium at temperature T, total energy (non-relativistic)

$$E_{tot} = E_{th}(T_{kin}) + \frac{1}{2}m\beta^2$$

Where, T_{kin} : Freezeout temperature (Kinetic).

Thermal motion

 β : Radial-Flow velocity of the surface of source. Collective Radial Flow

Final State p_T arises from a combination of contributions from Radial Flow as well as Thermal motion of particles.

> Traditionally, β , T_{kin} extracted by simultaneous Blast-Wave fits to p_T spectra of identified hadrons.

History : Components of p_T from particle spectra

For radially expanding medium at temperature T, total energy (non-relativistic)

$$E_{tot} = E_{th}(T_{kin}) + \frac{1}{2}m\beta^2$$

Where, T_{kin} : Freezeout temperature (Kinetic).

Thermal motion

 β : Radial-Flow velocity of the surface of source. Collective Radial Flow

Final State p_T arises from a combination of contributions from Radial Flow as well as Thermal motion of particles.

> Traditionally, β , T_{kin} extracted by simultaneous Blast-Wave fits to p_T spectra of identified hadrons.

Effectively provides average value of β and T_{kin}.
Does not capture `Event-by-Event' fluctuations in initial state geometry or energy deposition.

On an event-by event basis, categorize two sources of fluctuations influencing final state measured $\langle [p_T] \rangle$

Geometrical:

Hydrodynamic response to the size fluctuations

"Geometrical Component"

Intrinsic:

Fluctuations arising from Initial state, medium evolution.

"Intrinsic Component"

Event-by-Event $[p_T]$ Fluctuations = Geometrical + Intrinsic

Distinguishing Geometric and Intrinsic fluctuations is important to constrain both initial state and medium evolution.

> Use standard cumulant method used in flow analysis to measure Event by Event fluctuations in $[p_T]$:

$$c_{n} = \frac{\sum_{i_{1} \neq \dots \neq i_{n}} w_{i_{1}} \dots w_{i_{n}} (p_{\mathrm{T},i_{1}} - \langle [p_{\mathrm{T}}] \rangle) \dots (p_{\mathrm{T},i_{n}} - \langle [p_{\mathrm{T}}] \rangle)}{\sum_{i_{1} \neq \dots \neq i_{n}} w_{i_{1}} \dots w_{i_{n}}}$$

> Variance, $\langle c_2 \rangle$ and skewness, $\langle c_3 \rangle$ are further normalized to obtain dimensionless quantities

$$k_2 = \frac{\langle c_2 \rangle}{\langle [p_{\rm T}] \rangle^2}$$

Scaled Variance

$$k_3 = \frac{\langle c_3 \rangle}{\langle [p_{\rm T}] \rangle^3}$$

$$\gamma = \frac{\langle c_3 \rangle}{\langle c_2 \rangle^{3/2}}$$

Normalized Skewness

► Use standard cumulant method used in flow analysis to measure Event by Event fluctuations in $[p_T]$: $\sum_{i_1 \neq \dots \neq i_n} w_{i_1} \dots w_{i_n} (p_{T,i_1} - \langle [p_T] \rangle) \dots (p_{T,i_n} - \langle [p_T] \rangle)$

$$c_n = \frac{\sum_{i_1 \neq \dots \neq i_n} w_{i_1} \dots w_{i_n} (p_{T,i_1} - \langle [p_T] \rangle) \dots (p_{T,i_n} - \langle [p_T] \rangle)}{\sum_{i_1 \neq \dots \neq i_n} w_{i_1} \dots w_{i_n}}$$

> Variance, $\langle c_2 \rangle$ and skewness, $\langle c_3 \rangle$ are further normalized to obtain dimensionless quantities

$$k_{2} = \frac{\langle c_{2} \rangle}{\langle [p_{T}] \rangle^{2}} \qquad \qquad k_{3} = \frac{\langle c_{3} \rangle}{\langle [p_{T}] \rangle^{3}} \qquad \qquad \gamma = \frac{\langle c_{3} \rangle}{\langle c_{2} \rangle^{3/2}}$$

Scaled Variance

Scaled Skewness

Normalized Skewness

> Measured k_n approximately follow power-law dependence with N_{ch} .

- Independent Superposition Scenario: $\langle c_2 \rangle \propto \frac{1}{N_{ch}}, \quad \langle c_3 \rangle \propto (\frac{1}{N_{ch}})^2$
- > Explains approximate power-law dependence of k_n with N_{ch} .

> In UCC, (after N_{ch} corresponding to 5% Centrality),

- A sharp drop is observed for k_2 ,
- A small rise followed by drop is observed for k_3 .
- \succ Expected from narrowing of Geometrical fluctuations as $b \rightarrow 0$

Constraining Geometrical and Intrinsic Fluctuations

- In Ultra-Central Collisions:
 - 1. Fall of k_2 explained entirely by diminishing variance of Geometrical fluctuations.
 - 2. Increase in γ due to truncation of distribution of event-wise $[p_T]$.

Constraining Geometrical and Intrinsic Fluctuations

> Experimental measurement of the cumulants of $P([p_T])$ is effective towards disentangling "Geometrical fluctuations" from "Intrinsic fluctuations" in HIC.

• In UCC, $b \rightarrow 0$, evident from gradual narrowing of k_2 .

- In UCC, $b \rightarrow 0$, evident from gradual narrowing of k_2 .
- Within approximately fixed geometry (b), selecting larger N_{ch} chooses events with larger entropy density \rightarrow arising from intrinsic component.

- In UCC, $b \rightarrow 0$, evident from gradual narrowing of k_2 .
- Within approximately fixed geometry (b), selecting larger N_{ch} chooses events with larger entropy density \rightarrow arising from intrinsic component.
- Larger entropy density within a fixed geometry leads to larger radial push or $\langle [p_T] \rangle$.

• The slope of this rise of $\langle [p_T] \rangle$ in UCC is related to speed of sound of QGP:

$$c_s^2 = \frac{dP}{d\epsilon} = \frac{d(lnT)}{d(lns)} = \frac{d(ln\langle p_T \rangle)}{d(lnN_{ch})}$$

- Both ATLAS and CMS have observed the steep increase in slope of $\langle [p_T] \rangle$ in UCC. \Rightarrow Evidence of overlap area reaching its maximum and Thermalization of system.
- CMS extracted the slope of this rise: claimed the speed of sound of QGP, $c_s^2 \approx 0.241$.

Caveat: Dependence of UCC Slope of $\langle [p_T] \rangle$ on Evolution Dynamics 13

$$c_s^2(T_{\rm eff}) \propto \frac{d \ln(\langle [p_{\rm T}] \rangle)}{d \ln(N_{\rm ch}^{\rm rec})} \approx \frac{\Delta p_{\rm T}/\langle [p_{\rm T}] \rangle}{\Delta N_{\rm ch}^{\rm rec}/\langle N_{\rm ch}^{\rm rec} \rangle}$$

> ATLAS: slope of this rise depends on the p_T -range of the particles.

Caveat: Dependence of UCC Slope of $\langle [p_T] \rangle$ on Evolution Dynamics 13

$$c_s^2(T_{\rm eff}) \propto \frac{d \ln(\langle [p_{\rm T}] \rangle)}{d \ln(N_{\rm ch}^{\rm rec})} \approx \frac{\Delta p_{\rm T}/\langle [p_{\rm T}] \rangle}{\Delta N_{\rm ch}^{\rm rec}/\langle N_{\rm ch}^{\rm rec} \rangle}$$

- > ATLAS: slope of this rise depends on the p_T -range of the particles.
- Models without hydro evolution (or mechanisms to relate initial entropy densities to number of particles) fail to describe this UCC slope.

Caveat: Dependence of UCC Slope of $\langle [p_T] \rangle$ on Evolution Dynamics 13

$$c_s^2(T_{\rm eff}) \propto \frac{d \ln(\langle [p_{\rm T}] \rangle)}{d \ln(N_{\rm ch}^{\rm rec})} \approx \frac{\Delta p_{\rm T}/\langle [p_{\rm T}] \rangle}{\Delta N_{\rm ch}^{\rm rec}/\langle N_{\rm ch}^{\rm rec} \rangle}$$

- > ATLAS: slope of this rise depends on the p_T -range of the particles.
- Models without hydro evolution (or mechanisms to relate initial entropy densities to number of particles) fail to describe this UCC slope.

Slope for both p_T -ranges well described by MUSIC using $c_S^2 \approx 0.23$, corresponding to a $T_{eff} \approx 222$ MeV.

Conclusion

- > Using precise measurement of $[p_T]$ cumulants in heavy-ion collisions with ATLAS, we show:
- 1. $[p_T]$ cumulants provide novel experimental handle to disentangle and constrain: Geometrical Fluctuations (Initial state overlap Size) Intrinsic fluctuations (Other non-geometrical sources)
- 2. Slope of $\langle [p_T] \rangle$ vs N_{ch} in UCC provides direct constraint on speed of sound of QGP.

Outlook I: Effect of Decorrelation on extracted c_S^2

- \succ Extracted c_S^2 differs between event-classification based on rapidity selection.
- Might be due to decorrelation of radial flow.
- > Hydro model calculation: Radial flow displays decorrelation, just like flow decorrelations, Better reflects longitudinal evolution of energy deposition in η .

Outlook I: Effect of System Size

> Smaller System \Rightarrow Larger Smearing in Nch \Rightarrow UCC behavior from Geometrical suppression milder

Outlook I: Effect of System Size

> Smaller System \Rightarrow Larger Smearing in Nch \Rightarrow UCC behavior from Geometrical suppression milder

Similar analysis in smaller systems would test the limits on experimental disentanglement of Geometrical and Intrinsic components.

Prospects to study $\sqrt{s_{NN}}$ evolution of Geometrical and Intrinsic components of $[p_T]$ fluctuations at STAR?

And many more.....

Exciting times ahead with using this novel approach to understand initial state fluctuations better!!

Thank You..

Backup

The value of c_s^2 extracted by CMS is consistent with Lattice QCD calculations at an effective temperature of about 220 MeV with small systematic error.

• UCC measurement of $\langle [p_T] \rangle$ provides direct information on c_s^2 of QGP.

Caveat: Dependence of extracted c_s^2 on Event-Class

> ALICE: The extracted c_s^2 depends on η selection of particles and event-class. c_s^2 for E_T based measurements larger

- Particle production in mid-rapidity differs from those in forward-rapidity ⇒ Centrality Fluctuations
- In addition, measured $[p_T]$ also expected to have decorrelation effects.