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Limitations of Low-Energy Experiments

➙ Experimentally, the deformation of an (even-even) nucleus of mass number A and
charge Ze is quantified by,
β = 4π

3ZeR2
0

√
B(E2) ↑, R0 = 1.2A1/3,

B(E2) ↑ ➙ measured transition probability of the electric quadrupole operator
from the ground state to the first 2+ state.

STAR, Nature 635, 67–72 (2024)

➙ In ground states, nuclear shapes may fluctuate. Over different timescales with a
period of τrot ≈ 103 − 104fm/c (1fm/c = 3× 10−24 seconds), much shorter than
Spectroscopic processes.

➙ Spectroscopic measurements integrate over all nuclear orientations.

➙ Charge distribution only reflects an averaged deformation. Cannot provide real-
time insights into dynamic nuclear shape fluctuations.

➙ Heavy-ion collision experiments operate on much shorter (∼ 10−24s) timescales
and provide many body nucleon interactions in each nucleus.
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STAR, Nature 635, 67–72 (2024)

Nuclear Structure

⇓

Spatial anisotropy at the initial state

⇓

Momentum anisotropy of the
distribution of emitted particles

Initial state parameters:
Initial Size: R⊥ ∝ ⟨r2⊥⟩
Initial Shape: En ∝ ⟨rn⊥e−inϕ⟩

Final State momentum anisotropy:
d2N

dpT dϕ
= dN

2πdpT

(
1 + 2

∑∞
n=1 Vn(p)einϕ

)

Approx linear response EBE
at H.E. δ[pT ]

[pT ]
∝ − δR

R

Vn ∝ En

Jiangyong Jia, Phys.Rev.C 105 (2022) 4, 044905
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Woods-Saxon profile to include intrinsic deformations:

ρ(r,Θ,Φ) ∝
1

1 + exp
(

r−R(Θ,Φ)
a

) ,

R(Θ,Φ) = R0 [1 + β2 (cos γY20(Θ) + sin γY22(Θ,Φ)) + β3Y30(Θ) + β4Y40(Θ)]

Triaxial Spheroid: a ̸= b ̸= c
Prolate : a = b < c → β2, γ = 0
Oblate : a < b = c → β2, γ = π/3 or − β2, γ

B. Bally et al. Phys. Rev. Lett. 128,082301 (2022)
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Observable dependencies on deformation

➙ The variance of (v22) strongly depends on
β2 deformation, reflecting a predominantly
linear response to the eccentricity
fluctuations.
Giacalone et al., Phys. Rev. Lett. 127, 242301 (2021)

➙ The variance of [pT ] exhibits only a very
modest dependence on quadrupole
deformation → 0− 10% increase for
β2 = 0− 0.4 J. Jia, Phys.Rev.C 105, 014905 (2022)

➙ Non-trivial dependence: For prolate
deformation β2 > 0, the covariance
decreases with increasing β2 values.
However, for oblate deformation β2 < 0,
the covariance increases for more negative
β2 value in central collisions but decrease
in mid-central and peripheral collisions..
J. Jia et al., Phys. Rev. C 105, 014906 (2022)

➙ Both v22 and ϵ22 are similar between
β2 = −0.28 and β2 = 0.28, implying they
are mostly even functions of β2
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Comparison bw the initial- and final-state distributions

Top Row: ϵ2 − δd⊥/d⊥ with
different γ at fixed β2 = 0.28

Bottom Row: v22 − δ[pT ]/[pT ]
correlations

⟨ϵ22δd⊥⟩ < 0 for prolate nuclei
⟨ϵ22δd⊥⟩ ∼ 0 for rigid triaxial
nuclei
⟨ϵ22δd⊥⟩ > 0 for oblate nuclei

Comments

➙ The final-state observables demonstrate a similar dependence on the initial-
state deformation, reflecting how initial anisotropies influence the resulting
flow patterns in the final state.

➙ The comparison highlights how both initial- and final-state observables en-
code nuclear structure information, offering unique perspectives on the role
of deformation in heavy-ion collision outcomes.
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Role of β2 deformation in influencing the flow correlation observables

➙ As β2 increases, the distributions
become broader and expands sig-
nificantly along the v22 .

➙ No broadening along the
δ[pT ]/[pT ] and δNch/Nch axis.

➙ In the presence of deformation,
multiplicity distributions p(Npart)
are expected to be broadened and
smeared out but the total volume
of the nucleus slightly increases.

➙ The central region of the distri-
bution, corresponding to higher
event density, shifts and stretches
with increasing deformation pa-
rameters, but the overall size in the
x-axis remains largely unchanged.

➙ v23 does change but no pattern was
observed.
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Neural Network Architecture

➙ Architecture: A simple yet efficient neural network with multiple layers, including
convolutional layers for feature extraction and fully connected layers for classifica-
tion.

➙ Use nuclear deformation-dependent correlations to train the neural network.
- Initial-state: ϵ22 − δd⊥/d⊥.
- Final-state: v22 − δ[pT ]/[pT ], v23 − δ[pT ]/[pT ], v22 − δNch/Nch v22 − v23 , etc.

➙ Converting observables into images for neural network training.
(Captures correlations between observables and maps them into a format suitable
for convolutional layers.)
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Key Objectives for Data Preparation

➙ Provide the model with diverse nuclear shapes and configurations.

✉ Created 40 groups, each defined by a unique combination of deformation pa-
rameters β2, β4, and γ.

✉ β2: Varied from 0.2 to 0.3 in 0.02 increments and included negative values
from −0.22 to −0.28.

✉ γ: Assigned discrete values of 5◦, 10◦, 15◦, and 20◦.

✉ 238U +238 U(
√
sNN = 193)GeV, 129Xe+129 Xe(

√
sNN = 5.44)TeV.

➙ For each β, γ combinations, we simulated 106 U+U collision events using iEBE-
VISHNU under minimum-bias conditions with a 0−1% centrality cut to select ultra-
central collisions.

➙ Randomly selected 20 − 30% of events from each configuration to generate 3,000
images per configuration.
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Correlations vs Accuracy

We can quantify the correlation using the pearson correlation Sensitivity of each observ-
able to the deformation and its suitability for training.

➙ Observables related to v23 correlations are less sensitive with the change in nuclear
deformations as v3 receives limited contributions from quadrupole deformation

➙ Observables with higher mean correlations lead to higher prediction accuracy.

➙ The combined observables category where all the correlations are used as input to
the network, achieve consistently high accuracy, with a narrow box and shorter tails.
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Prediction of β and γ based on various final-state correlations

➙ The accuracy range varies significantly depending on the type of observable distri-
butions used for training NN.

➙ v22−δ[pT ]/[pT ] correlation demonstrates high and consistent classification accuracy.

➙ Correlations involving v23 result in poor training.

➙ The upper bound breaks for combined observables.
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Confusion Matrix for 238U +238 U

➙ For almost all values
of β2 and γ, the
prediction accuracies
exceed 95%. This
indicates that the
performance of the
neural network does
not significantly
depend on the
specific deformation
parameters.

➙ The misclassifications
are relatively rare, as
indicated by the
dominance of high
diagonal values and
the near-zero values
off the diagonal.
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Confusion Matrix for 238U +238 U and 129Xe+129 Xe

➙ We combined two
distinct nuclear
collision systems to
assess the network’s
robustness against
variations in nuclear
size.

➙ Obtained from the
initial-state
ϵ22 − δd⊥/d⊥
correlation in Xe+Xe
and U+U collisions.

➙ Lowest Prediction
accuracy: 89%

➙ The model is robust
across different
system sizes.
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Confusion Matrix for 129Xe+129 Xe with smaller δβ2 and δγ

➙ Performed tests using
a smaller range of β
and γ with finer
steps (δγ = 1◦,
δβ = 0.01) while
employing
initial-state
observables, and
observed consistently
high prediction
accuracy.

➙ Lowest Prediction
accuracy: 90%
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Summary
➙ Our work establishes a systematic framework for using heavy-ion collision observ-

ables in nuclear structure studies, providing valuable insights into the connection
between final-state dynamics and nuclear deformations.

➙ We demonstrated the sensitivity of observables, such as v2 , [pT ], and their correla-
tions, to nuclear structure.

➙ For the first time, a neural network has been successfully applied to extract nuclear
structure information, specifically deformation parameters, from heavy-ion collision
data.

➙ Validated on multiple collision systems (U+U and Xe+Xe) and observables, demon-
strating generalization across nuclear sizes and configurations.
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