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Limitations of Low-Energy Experiments

= Experimentally, the deformation of an (even-even) nucleus of mass number A and
charge Z e is quantified by,
8= 3ZeR2 VB(E2) T, Ro = 1.2A1/3,
B(E2) 1 = measured transition probability of the electric quadrupole operator
from the ground state to the first 2% state.
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STAR, Nature 635, 67-72 (2024)
= In ground states, nuclear shapes may fluctuate. Over different timescales with a
period of 7ot =~ 103 — 10%*fm/c (1fm/c = 3 x 10~24 seconds), much shorter than
Spectroscopic processes.

= Spectroscopic measurements integrate over all nuclear orientations.

= Charge distribution only reflects an averaged deformation. Cannot provide real-
time insights into dynamic nuclear shape fluctuations.

— Heavy-ion collision experiments operate on much shorter (~ 10~2%s) timescales
and provide many body nucleon interactions in each nucleus.
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Woods-Saxon profile to include intrinsic deformations:
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1+exp(

R(©,®) = Ro [l + B2 (cos7Y20(O) + sinY22(0, ®)) + B3Y30(0) + B4Ya0(0)]
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B. Bally et al. Phys. Rev. Lett. 128,082301 (2022)
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Observable dependencies on deformation

0.2<p <2 GeV, <2
AMPT

8 |” vl = The variance of (v3) strongly depends on

] B2 deformation, reflecting a predominantly
linear response to the eccentricity
fluctuations.

Giacalone et al., Phys. Rev. Lett. 127, 242301 (2021)

= The variance of [pr] exhibits only a very
modest dependence on quadrupole
deformation — 0 — 10% increase for

= Non-trivial dependence: For prolate
deformation 32 > 0, the covariance
decreases with increasing (2 values.

10 5 N ﬁi\ However, for oblate deformation 32 < 0,
g ” the covariance increases for more negative
@: T 02<p ez GeV, i< B2 value in central collisions but decrease

sl in mid-central and peripheral collisions..
+ 8
9 Ah, ] J. Jia et al., Phys. Rev. C 105, 014906 (2022
T ..
ETT™ | ‘ - Both v2 and €3 are similar between
$ b - .
02k ] B2 = —0.28 and 2 = 0.28, implying they
o5 : o o5 i are mostly even functions of 32
Noan/2A N, /2A
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Comparison bw the initial- and final-state distributions
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(€26d ) < 0 for prolate nuclei
(€36d,) ~ O for rigid triaxial
nuclei

(€28d ) > 0 for oblate nuclei

= The final-state observables demonstrate a similar dependence on the initial-
state deformation, reflecting how initial anisotropies influence the resulting
flow patterns in the final state.
= The comparison highlights how both initial- and final-state observables en-
code nuclear structure information, offering unique perspectives on the role

of deformation in heavy-ion collision outcomes.
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Role of 35 deformation in influencing the flow correlation observables
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Nuclear Structure analysis of Hea

As (32 increases, the distributions
become broader and expands sig-
nificantly along the v3.

No  broadening along the
S[pr]/[pr] and 6 Nep, /Nep, axis.

In the presence of deformation,
multiplicity distributions p(Npart)
are expected to be broadened and
smeared out but the total volume
of the nucleus slightly increases.

The central region of the distri-
bution, corresponding to higher
event density, shifts and stretches
with increasing deformation pa-
rameters, but the overall size in the
x-axis remains largely unchanged.

v2 does change but no pattern was
observed.
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ables and Model training

Neural Network Architecture

= Architecture: A simple yet efficient neural network with multiple layers, including
convolutional layers for feature extraction and fully connected layers for classifica-
tion.

Block-| Block -l Block Il Fully Connected Layers*
Conv_1 Batch Conv_2 Batch Conv_3 Batch ‘ReLU Activation
Convolition Convolution Convollition
ex 3; kemel +Max- @x 3y Keme\ +Max- @Bx 3; Keme\ + Max- "

] f —

L

R e (84@56x54) (128@27x27) (128@12x12) /
cose (1284@4x4) 64 Units.
128 Units Output Predictions

= Use nuclear deforrnation—dependent correlations to train the neural network.
- Initial-state: 62 —ddy /d; .
- Final-state: v3 — [pr]/[pr], v3 — 8[pr]/[pT), v3 — 6Nen/Nep v3 — v3, etc.

= Converting observables into images for neural network training.
(Captures correlations between observables and maps them into a format suitable
for convolutional layers.)
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Observables and Model training
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Key Objectives for Data Preparation

= Provide the model with diverse nuclear shapes and configurations.

= Created 40 groups, each defined by a unique combination of deformation pa-
rameters 32, 34, and .

B2: Varied from 0.2 to 0.3 in 0.02 increments and included negative values
from —0.22 to —0.28.

= ~: Assigned discrete values of 5°, 10°, 15°, and 20°.
= 238y 4238 U (\/snyn = 193)GeV, 129 Xe +122 Xe(\/syN = 5.44)TeV.

= For each 3, v combinations, we simulated 106 U+U collision events using iEBE-
VISHNU under minimum-bias conditions with a 0 — 1% centrality cut to select ultra-
central collisions.

= Randomly selected 20 — 30% of events from each configuration to generate 3,000
images per configuration.
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Correlations vs Accuracy

We can quantify the correlation using the pearson correlation Sensitivity of each observ-
able to the deformation and its suitability for training.

087 g4 100
o7 ? —
0.6 90 g
g o
205 S
5 &
[ >
£ & 80
504 g o
1 3
S03 <
70 (b)
0.2
01 60
0.0
B & g z T & & g g T £
= = % H - = = H H ™ ]
s 2 5 g ¢ < T s £ ¢ 2
B ° b N ® ® M M 5
| [ s um | ! N N ©
- o ) ) e e < ¥

= Observables related to v2 correlations are less sensitive with the change in nuclear
deformations as vs receives limited contributions from quadrupole deformation

= Observables with higher mean correlations lead to higher prediction accuracy.

= The combined observables category where all the correlations are used as input to
the network, achieve consistently high accuracy, with a narrow box and shorter tails.
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Results
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Prediction of § and v based on various final-state correlations
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= The accuracy range varies significantly depending on the type of observable distri-
butions used for training NN.

¥

v2—6[pr]/[pr] correlation demonstrates high and consistent classification accuracy.
= Correlations involving v3 result in poor training.

= The upper bound breaks for combined observables.
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Summary

= We combined two
distinct nuclear
collision systems to
assess the network’s
robustness against
variations in nuclear
size.

Obtained from the
initial-state

eg —dd,y /d
correlation in Xe+Xe
and U+U collisions.

Lowest Prediction
accuracy: 89%

The model is robust
across different
system sizes.
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Summary
= Our work establishes a systematic framework for using heavy-ion collision observ-

ables in nuclear structure studies, providing valuable insights into the connection
between final-state dynamics and nuclear deformations.

= We demonstrated the sensitivity of observables, such as vs , [pr], and their correla-
tions, to nuclear structure.

= For the first time, a neural network has been successfully applied to extract nuclear
structure information, specifically deformation parameters, from heavy-ion collision
data.

= Validated on multiple collision systems (U+U and Xe+Xe) and observables, demon-
strating generalization across nuclear sizes and configurations.
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