Nuclear Structure analysis of Heavy-Ion Collisions using Neural Network model

10th Asian Triangle Heavy-Ion Conference - ATHIC 2025 IISER Berhampur, India

Abhisek Saha Center for High Energy Physics, Peking University

In collaboration with Hadi Mehrabpour, Huichao Song, and Jiangyong Jia

Limitations of Low-Energy Experiments

 \rightarrow Experimentally, the deformation of an (even-even) nucleus of mass number A and charge Ze is quantified by,

$$\beta = \frac{4\pi}{3ZeR_0^2} \sqrt{B(E2)} \uparrow, \qquad R_0 = 1.2A^{1/3},$$

 $B(E2) \uparrow \xrightarrow{\bullet}$ measured transition probability of the electric quadrupole operator from the ground state to the first 2^+ state.

- → In ground states, nuclear shapes may fluctuate. Over different timescales with a period of $\tau_{rot} \approx 10^3 10^4$ fm/c (1fm/c = 3×10^{-24} seconds), much shorter than Spectroscopic processes.
- → Spectroscopic measurements integrate over all nuclear orientations.
- → Charge distribution only reflects an averaged deformation. Cannot provide realtime insights into dynamic nuclear shape fluctuations.
- → Heavy-ion collision experiments operate on much shorter ($\sim 10^{-24}$ s) timescales and provide many body nucleon interactions in each nucleus.

Woods-Saxon profile to include intrinsic deformations:

Observable dependencies on deformation

→ The variance of (v_2^2) strongly depends on β_2 deformation, reflecting a predominantly linear response to the eccentricity fluctuations.

Giacalone et al., Phys. Rev. Lett. 127, 242301 (2021)

- → The variance of $[p_T]$ exhibits only a very modest dependence on quadrupole deformation $\rightarrow 0 - 10\%$ increase for $\beta_2 = 0 - 0.4$ J. Jia, Phys.Rev.C 105, 014905 (2022)
- → Non-trivial dependence: For prolate deformation $\beta_2 > 0$, the covariance decreases with increasing β_2 values. However, for oblate deformation $\beta_2 < 0$, the covariance increases for more negative β_2 value in central collisions but decrease in mid-central and peripheral collisions.

J. Jia et al., Phys. Rev. C 105, 014906 (2022)

→ Both v_2^2 and ϵ_2^2 are similar between $\beta_2 = -0.28$ and $\beta_2 = 0.28$, implying they are mostly even functions of β_2

- → The final-state observables demonstrate a similar dependence on the initialstate deformation, reflecting how initial anisotropies influence the resulting flow patterns in the final state.
- → The comparison highlights how both initial- and final-state observables encode nuclear structure information, offering unique perspectives on the role of deformation in heavy-ion collision outcomes.

Role of β_2 deformation in influencing the flow correlation observables

- → As β₂ increases, the distributions become broader and expands significantly along the v₂².
- → No broadening along the $\delta[p_T]/[p_T]$ and $\delta N_{ch}/N_{ch}$ axis.
- → In the presence of deformation, multiplicity distributions $p(N_{part})$ are expected to be broadened and smeared out but the total volume of the nucleus slightly increases.
- → The central region of the distribution, corresponding to higher event density, shifts and stretches with increasing deformation parameters, but the overall size in the x-axis remains largely unchanged.
- → v_3^2 does change but no pattern was observed.

	Observables and Model training		
0000	0000	00000	

Neural Network Architecture

→ Architecture: A simple yet efficient neural network with multiple layers, including convolutional layers for feature extraction and fully connected layers for classification.

- → Use nuclear deformation-dependent correlations to train the neural network.
 - Initial-state: $\epsilon_2^2 \delta d_\perp / d_\perp$.
 - Final-state: $v_2^2 \delta[p_T]/[p_T], v_3^2 \delta[p_T]/[p_T], v_2^2 \delta N_{ch}/N_{ch} v_2^2 v_3^2$, etc.
- → Converting observables into images for neural network training. (Captures correlations between observables and maps them into a format suitable for convolutional layers.)

Introduction	Observables and Model training	Results	Summary
0000		00000	O

Key Objectives for Data Preparation

 \rightarrow Provide the model with diverse nuclear shapes and configurations.

- E Created 40 groups, each defined by a unique combination of deformation parameters β_2 , β_4 , and γ .
- $\boxtimes \beta_2$: Varied from 0.2 to 0.3 in 0.02 increments and included negative values from -0.22 to -0.28.
- $\boxtimes~\gamma$: Assigned discrete values of $5^{\circ},\,10^{\circ},\,15^{\circ},$ and $20^{\circ}.$

$$\cong$$
 ²³⁸U +²³⁸U ($\sqrt{s_{NN}} = 193$)GeV, ¹²⁹Xe +¹²⁹Xe ($\sqrt{s_{NN}} = 5.44$)TeV.

- → For each β , γ combinations, we simulated 10⁶ U+U collision events using iEBE-VISHNU under minimum-bias conditions with a 0-1% centrality cut to select ultracentral collisions.
- → Randomly selected 20 30% of events from each configuration to generate 3,000 images per configuration.

Correlations vs Accuracy

We can quantify the correlation using the pearson correlation Sensitivity of each observable to the deformation and its suitability for training.

- → Observables related to v_3^2 correlations are less sensitive with the change in nuclear deformations as v_3 receives limited contributions from quadrupole deformation
- \rightarrow Observables with higher mean correlations lead to higher prediction accuracy.
- → The combined observables category where all the correlations are used as input to the network, achieve consistently high accuracy, with a narrow box and shorter tails.

- → The accuracy range varies significantly depending on the type of observable distributions used for training NN.
- → $v_2^2 \delta[p_T]/[p_T]$ correlation demonstrates high and consistent classification accuracy.
- → Correlations involving v_3^2 result in poor training.
- → The upper bound breaks for combined observables.

Confusion Matrix for $^{238}U+^{238}U$

00 00 00 05 97.5 v=15° =20* γ=5°. =10* =15* γ=20°. γ=5°. γ=10° γ=15* γ=20° γ=5* γ=10° =15* =20° γ=5° =10* γ=15° =20* γ=5° =10* v=15° γ=20* γ=5° =10* r=15° =20* B2=.20, B2=.22. =.20, =.20, =.20, =.22, =.22. =.24, ' =.26, ' =.26, =.26,

- → For almost all values of β_2 and γ , the prediction accuracies exceed 95%. This indicates that the performance of the neural network does not significantly depend on the specific deformation parameters.
- → The misclassifications are relatively rare, as indicated by the dominance of high diagonal values and the near-zero values off the diagonal.

- 0.0 0.0 0.0 0.0 0.0 00.5 2.5 0.0 2.0 0.5 2.5 0.0 0.0 0.0 1.0 0.0 0.0 1 00 00 05 00 00 92 5 05 01 Xe+Xe Br=0.25 v=35° - 0.0 0.0 0.0 0.0 0.0 0.0 v=20° /=15* 1+U, β2=0.22, γ=20° U+U, B2=0.25, U+U, B2=0.28, U+U, B2=0.34, 1+U, B2=0.22, I+U, β2=0.25, I+U, B2=0.25, 1+U, B2=0.28, +Xe. B2=0.23. 1+U, B2=0.25, 1+U, B2=0.28, I+U, B2=0.28, I+U, B2=0.34, I+U, B2=0.34,
- → We combined two distinct nuclear collision systems to assess the network's robustness against variations in nuclear size.
- → Obtained from the initial-state $\epsilon_2^2 - \delta d_\perp / d_\perp$ correlation in Xe+Xe and U+U collisions.
- → Lowest Prediction accuracy: 89%
- → The model is robust across different system sizes.

0000								
Confusion Matrix for	$x^{129}Xe + x^{129}Xe$ with smaller e	δeta_2 and $\delta\gamma$						
Xe Centrality = 0-1%, Sampling = 10%								
β=0.26, γ=25 <mark>- 98</mark> 0 0 0 0 0.5	0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0						
β=0.26, γ=26 - 0 <mark>98</mark> 0 0 0 0 0		0.5						
β=0.26, γ=27 - 0 0 <mark>96</mark> 0 0.5 0 0		0.5						
β=0.26, γ=28 - 1 0 0 96 0 0 1	0 0.5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0						
β=0.26, γ=29 - 0 0 0 0 96 0 1	0 0 0.5 0 0 0.5 0 0 0.5 0 0 0 0 0 0.5 0 1	0						
β=0.27, γ=25 - 0 0 0 0 0 <mark>94</mark> 1		 Derformed tests using 						
β=0.27, γ=26 - 0 0 0 0.5 0 1 90	0 0 1 0.5 0.5 0 0.5 1 0.5 1 0 0 1 0 2 0 0	•• Periorilled tests using						
β=0.27, γ=27 - 0 0 0 0 0.5 0 1	94 <mark>010000.500000000002</mark>	a smaller range of β						
β=0.27, γ=28 - 0 0 0 0 0 0 0	01 <mark>e+0</mark> 200000000000000000000	• and γ with finer						
β=0.27, γ=29 - 0 0 0 0 0 0 0	0 0 <mark>98</mark> 0 0 0 0 0 0.5 0.5 0 0 0 0.5 0.5	• steps ($\delta \gamma = 1^{\circ}$,						
β=0.28, γ=25 - 0 0 1 0 0 0 0	0 0 0 <mark>98</mark> 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0	$\delta \beta = 0.01$) while						
β=0.28, γ=26 - 0 0 0 0 0 0 0	0 0 0 0 <mark>99</mark> 0 0.5 0 0 0 0 0 0 0 0 0 0.5	$_{0}$ $op = 0.01$ while $_{0}$						
β=0.28, γ=27-0.5 0 0.5 0 0.5 0 0	0 0 0 0 0 <mark>98</mark> 0 0 0 0 0 0 0 0 0 0 0	• employing						
≓β=0.28,γ=28 - 0 0 0 0 0 0 0	0 0 0.5 0 0.5 0 <mark>99</mark> 0 0 0 0 0 0 0 0 0 0	• initial-state						
β=0.28, γ=29 - 0 0 0 0.5 0 0 1	0 0 1 0 0 0.5 0 <mark>93</mark> 0 0.5 0 0 1 0.5 0 0 0	² observables, and						
β=0.29, γ=25 - 0 0 0 0 0 0 0	0 0.5 0 2 0 0 0 <mark>96</mark> 0.5 0 0 0 0 0 0 0	observed consistently						
β=0.29, γ=26 - 0 0 1 0 0 0 0	0 0 0 0.5 0.5 0 0 0.5 0 <mark>94</mark> 0 0.5 0 0 0.5 0 2.5	high prediction						
β=0.29, γ=27 - 0 0 0 0 0 0 0	0 0 0.5 0 0 0 0 0 0 <mark>97</mark> 0.5 0 0 0 0 2							
β=0.29, γ=28 - 0 0 1.5 0 0 0 0	0 0 0 0.5 0 0 0 0 0 1 <mark>94</mark> 0 0 0 0.5 0	² accuracy.						
β=0.29, γ=29 - 0 0 0 0 0 0 0	0 0.5 0 0 2.5 0 0 0 0 0 0 0 <mark>97</mark> 0 0 0 0	0						
β=0.30, γ=25 - 0 0 0 0.5 0 0 0	0 0 0 0.5 0 0 0 0 0 0 0.5 0 0 <mark>97</mark> 0 0 0	1.5 Langest Due listics						
β=0.30, γ=26 - 0 0 0 0 0.5 0 0	0 0 0 0 0 0 0 0 0 0.5 0 0 0 <mark>99</mark> 0 0	\bullet \rightarrow Lowest Prediction						
β=0.30, γ=27 - 0 0 0 0 0 0 0	0 0 0 0 0.5 0 0.5 0 0.5 0.5 0.5 0 0.5 0 0 <mark>96</mark> 0.5	accuracy: 90%						
β=0.30, γ=28 - 0 0 0 0 0 0 0	00.50000000000000.5000 <mark>99</mark>	0						
β=0.30, γ=29 - 0 0 0 0 0 0 0	0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0	2+02						
β=0.26, γ=25 β=0.26, γ=26 β=0.26, γ=27 β=0.26, γ=28 β=0.26, γ=28 β=0.27, γ=25 β=0.27, γ=26	9.0.27, y=27 8.0.027, y=28 8.0.027, y=28 8.0.028, y=28 8.0.028, y=28 9.0.28, y=28 9.0.29, y=28 9.0.029, y=28 9.0.029, y=28 9.0.020, y=28 9.0.030, y=28 9.0.030, y=28	₿=0.30, y=29						

Abhisek Saha (Peking U.)

ntroduction	Observables and Model training	Results	Summary
2000	0000	00000	•

Summary

- → Our work establishes a systematic framework for using heavy-ion collision observables in nuclear structure studies, providing valuable insights into the connection between final-state dynamics and nuclear deformations.
- \Rightarrow We demonstrated the sensitivity of observables, such as v_2 , $[p_T],$ and their correlations, to nuclear structure.
- → For the first time, a neural network has been successfully applied to extract nuclear structure information, specifically deformation parameters, from heavy-ion collision data.
- → Validated on multiple collision systems (U+U and Xe+Xe) and observables, demonstrating generalization across nuclear sizes and configurations.

Acknowledgment:

This work is supported by the National Natural Science Foundation of China with grants Nos.12247107, 12075007

Thanks