

# **Open heavy-flavour hadron decay muon production** with ALICE at the LHC

# **MD SAMSUL ISLAM** Indian Institute of Technology Bombay

# for the ALICE Collaboration



10th Asian Triangle Heavy-Ion Conference (ATHIC 2025), 13-16 January **IISER Berhampur, Odisha, India** 







### => Motivation

### => Energy loss mechanism

### => **Results**

=> Summary

## **Outline:**







=> Both charm and beauty quarks (  $m_c \approx 1.29$  GeV and  $m_b \approx 4.19$  GeV ) are heavy compared to the light u, d, and s quarks and significantly exceed the QCD scale parameter of 0.2 GeV.

=> The heavy-flavour (charm and beauty) hadron production can be theoretically calculated within the framework of perturbative Quantum Chromodynamics (pQCD) over all momenta.

=> The measurements of heavy-flavour production in proton-proton (pp) collisions at the LHC provide stringent test for pQCD calculations.

=> Additionally, studies in pp collisions serve as a necessary baseline for the same measurement in proton-nucleus (p-A) and nucleus-nucleus (A-A) collisions in order to investigate the influence of cold and hot nuclear matter effects on heavy-flavour production.

## Motivation







## **Heavy quark production in A-A collisions**

==> Investigation of strongly-interacting matter at high energy density and temperature in ultra-relativistic heavy-ion collisions.

==> Heavy-quarks (charm and beauty) are very important probe to study such QGP properties.

i) due to their large mass, predominantly produced in the early stage on a time scale (about 1 fm/c) before the QGP formation.

$$au_f^{
m q} < rac{\hbar}{m_{
m q}} \quad (m_{
m c} pprox$$
 1.29 GeV,  $m_{
m b} pprox$  4.19 GeV,

ii) experience the full evolution of the hot and dense QCD medium.

iii) lose energy via radiative and collisional processes during their propagation through the medium.

decays

$$R_{\rm AA}(p_{\rm T}, {\rm y}) = \frac{1}{\langle N_{\rm coll} \rangle} \times \frac{d^2 N_{\rm AA}/dp_{\rm T} d{\rm y}}{d^2 N_{\rm pp}/dp_{\rm T} d{\rm y}} ,$$

==> Hadronisation of heavy quarks into heavy-flavour hadrons,

i) Open heavy-flavour hadrons: heavy quarks and anti-quarks fragment (or coalesce) into hadrons. ii) Quarkonia: heavy quark and anti-quark pair forms a bound state. (typically 1-2%)

### **10th Asian Triangle Heavy-Ion Conference**

 $\hbar c = 0.197 \text{ GeV. fm}$ GeV,

==> The energy loss of the heavy-quarks passing through the hot and dense medium produced in heavy-ion collisions can be quantified in terms of Nuclear Modification Factor ( $R_{AA}$ ) of final state particles, e.g. muons from heavy-flavour (HF) hadron

 $\langle N_{\rm coll} \rangle$  being average number of binary nucleon-nucleon collisions

13-16 January 2025







### ==> Radiative energy loss :

i) Heavy quarks emit gluons during their propagation, losing energy.

ii) Gluons exhibit a larger color coupling factor than quarks and so the energy loss of quarks is expected to be smaller than that of gluons.

 $(\theta < m_q/E_q)$  with respect to the quark momentum vector is suppressed).

==> distinct mass hierarchy,  $(R_{AA})_{light quarks} < (R_{AA})_c <$ 

Radiative energy loss is more relevant at higher momenta.

## **Energy loss mechanism**

ii) Heavy quark energy loss is reduced compared to light quarks due to dead-cone effect (gluon radiation at small angles

$$(R_{AA})_{b}$$













### ==> Collisional process :

Heavy quarks also lose energy through elastic scattering with the light quarks, antiquarks, and gluons in the QGP. i) Elastic scattering : preserve the identity of heavy quarks.

Depends on the path length and medium density, transport coefficients (like spatial diffusion coefficient, momentum) ii) broadening etc.)

iii) More significant at lower momentum

### ==> Combined (radiative + collisional) effect:

i) charm quarks, being lighter than bottom quarks, generally experience more significant energy loss through both collisional and radiative processes.

ii) total energy loss is reflected in the  $R_{AA}$ .

## Energy loss mechanism ....









## **Measurements of open heavy-flavour hadron decay leptons with ALICE**

- Electrons from semi-electronic channel decays at midrapidity.
- Muons from semi-muonic channel decays at forward rapidity. ii)

Here we discuss, the results of the open heavy-flavour decay muon (HFM) production at forward rabidity with Att CE.

- => ALICE has measured the production of muons from open heavy flavour hadron decays  $\frac{9}{6}$ <sup>10<sup>5</sup></sup> in pp and heavy-ion collisions during Run 1 (2009-2012) and Run 2 (2015-2018).
  - i) pp collisions at  $\sqrt{s} = 0.9$ , 2.76 & 7 TeV (Run 1) and 5.02 TeV (Run 2).
  - ii) p-Pb collisions at  $\sqrt{s_{\rm NN}}$  = 5.02 TeV.
  - iii) Xe-Xe collisions at  $\sqrt{s_{\rm NN}} = 5.44$  TeV.
  - ii) Pb-Pb collisions at  $\sqrt{s_{\rm NN}}$  = 2.76 TeV and 5.02 TeV.





13-16 January 2025











### **Event Selection Cuts :**

– Physics selection: Offline event selection to reject any Muon Single Low (MSL) =>  $p_{\rm T}$  -threshold  $\sim$  1 GeV/c background events at the hardware level. Muon Single High (MSH) =>  $p_{\rm T}$  -threshold ~ 4.2 GeV/c – Vertex: z-component of vertex selection within  $|V_7| < 10$  cm



The  $p_{\rm T}$ -differential  $R_{\rm AA}$  of muons from open heavyflavour hadron decays in a given centrality class

$$R_{AA}(p_{T}, y) = \frac{\left(\frac{d^{2}N^{\mu^{\pm}}}{dp_{T}dy} - \sum \frac{d^{2}N^{\text{non-HF} \to \mu^{\pm}}}{dp_{T}dy}\right)_{\text{Pb-Pb}}}{\langle N_{\text{coll}} \rangle \times \left(\frac{d^{2}N^{\text{c,b} \to \mu^{\pm}}}{dp_{T}dy}\right)_{\text{pp}}}$$

### **10th Asian Triangle Heavy-Ion Conference**

## **Analysis procedure**

| Muon | Triggered | events: |
|------|-----------|---------|
|------|-----------|---------|

- A beam-induced background track does not point towards the interaction vertex
- Multiple coulomb scattering inside the front absorber => tracks pointing toward interaction vertex => DCA distribution follows Gaussian = width of gaussian proportional to 1/p = proposed to study p x DCA distribution

$$\frac{d^2 N^{\text{non}-\text{HF}\to\mu^{\pm}}}{dp_{\text{T}} dy} = \frac{d^2 N^{\mu\leftarrow\pi,\text{K}}}{dp_{\text{T}} dy} + \frac{d^2 N^{\text{sec }\mu}}{dp_{\text{T}} dy} + \frac{d^2 N^{\mu\leftarrow\text{J}/\psi}}{dp_{\text{T}} dy} + \frac{d^2 N^{\mu\leftarrow\text{W}}}{dp_{\text{T}} dy} + \frac{d^2 N^{\mu\leftarrow\text{W}}}{dp$$











## **Background contributions in heavy-flavour decay muon measurement**



pp collisions @  $\sqrt{s}$  = 5.02 TeV

The total contribution of muons from primary  $\pi^{\pm}$  and  $K^{\pm}$  decays decreases with increasing  $p_{\rm T}$  from about 39% at  $p_{\rm T}$  = 2 GeV/*c* down to about 4% at  $p_{\rm T}$  = 20 GeV/*c*.

ii) Muons from secondary  $\pi^{\pm}$  and  $K^{\pm}$  decays relative to the inclusive muon yield decreases with increasing  $p_{\rm T}$  from about 4% at  $p_{\rm T}$  = 2 GeV/c to less than 1% at  $p_{\rm T}$  = 5 GeV/c.

- The relative contribution of muons from W and  $Z/\gamma^*$  with respect to inclusive muons is negligible for  $p_{\rm T}$  < 12 GeV/*c* and increases with  $p_{\rm T}$ from about 1% at  $p_{\rm T}$  = 12 GeV/*c* up to 12% in 18 <  $p_{\rm T}$  < 20 GeV/*c*.
- iv) The relative contribution of  $J/\psi$  decay muon to the inclusive muons yield varies from 4% to less than 1%, with the maximum fraction at intermediate  $p_{\rm T}$  (4 <  $p_{\rm T}$  < 6 GeV/*c*).

13-16 January 2025











# $p_{\rm T}$ -differential production cross-section of open heavy-flavour decay muons with ALICE

- Logarithms) calculations.
- separately.



13-16 January 2025





## **Comparison of** $R_{AA}$ **to models without and with radiative energy**



=> HFM distributions are predominantly sensitive to the charm in-medium energy loss for  $p_{\rm T} < 5 \text{ GeV}/c$ .

 $\Rightarrow$  At high  $p_{\rm T}$  the dominant contribution is from beauty-hadron decays rather than charm, so it is more sensitive to the suppression of beauty

=> MC@sHQ+EPOS2 predictions provide a fair description in central Pb–Pb collisions at  $\sqrt{s_{\rm NN}} = 5.02$  TeV within uncertainties, while at  $\sqrt{s_{\rm NN}} = 2.76$  TeV, the model tends to slightly overestimate the measured  $R_{AA}$  at low/intermediate  $p_{T}$ .

 $\Rightarrow$  MC@sHQ+EPOS2 model reproduces better the data at large  $p_T$  when considering both elastic and radiative energy loss.





=> Heavy quarks suffer a strong in-medium energy loss over a wide rapidity interval.

=> In both cases, the measured yield suppression at  $\sqrt{s_{NN}}$  = 5.02 TeV is comparable to that observed at  $\sqrt{s_{NN}}$  = 2.76 TeV.

=> This similarity of the  $R_{AA}$  at two different energies may results from the interplay of the following two effects: i) a flattening of the  $p_{\rm T}$  spectra of charm and beauty quarks with increasing collision energy, which would reduce the suppression.

### **10th Asian Triangle Heavy-Ion Conference**

=> The observed  $R_{AA}$  at mid rapidity (from heavy-flavour decay electrons) and forward rapidity (from heavy-flavour decay muons) are similar.

ii) a medium temperature estimated to be higher by about 7% at  $\sqrt{s_{NN}} = 5.02$  TeV than at 2.76 TeV --> would increase the suppression

### 13-16 January 2025







# **Comparison of** $R_{AA}$ at forward rapidity in Xe-Xe and Pb-Pb collisions



==> Different charged particle multiplicities (and hence energy densities) are present to the same centrality class in Pb-Pb and Xe-Xe collision systems and hence we expect a different suppression in the two collision systems at the same centrality class.

==> The evolution of  $R_{AA}$  in Pb-Pb and Xe-Xe collision systems is similar, although the suppression is stronger in Pb-Pb collisions at the same centrality class.

=> The  $p_{\rm T}$ -integrated  $R_{\rm AA}$  values in the range  $3 < p_{\rm T} < 8$  GeV/c differ by about 2.5 standard deviations which may result from the difference in the system size.

==> The MC@sHQ+EPOS2 model describes the suppression observed in the data for both Pb–Pb and Xe–Xe systems in central (0–10%) collisions. The PHSD calculations underestimate the measured suppression over the entire  $p_{\rm T}$  interval in these two collision systems.















# Scope with MFT+ Muon Spectrometer of ALICE in Rusimulation of Single Muon

The study of the production of heavy mesons ( generators. This production is to be tuned to rep Muon physics program suffered several limitations during Run 1 and Run 2, specially due to the multiple calculations for the production of bottom and the muon tracks inside hadron absorber => vertex region is smeared. may undergo further decay to electron or muon

Matching of tracks reconstructed in the tracking system of Muon Spectrometer and that with MFT cluster =>

- i) Separation of prompt  $J/\psi$  from b-decay  $J/\psi$ .
- charm ( $c\tau \sim 100 \ \mu m$ ) and beauty ( $c\tau \sim 500 \ \mu m$ ) hadrons.
- iii) Study of heavy-flavour (HF) using single muons down to  $p_{\rm T}$  ~1 GeV/c.



ii) Open charm and open beauty via semi-muonic decays can be distinguished because of the different lifetimes of

![](_page_13_Figure_12.jpeg)

The simulation is carried out for the muon dec

![](_page_13_Figure_15.jpeg)

![](_page_13_Figure_16.jpeg)

![](_page_14_Picture_0.jpeg)

### Charm & beauty separation: An analysis of the Offset distribution

The measurement of charm and beauty yields is based on the fit of the distance of closest approach (DCA) distribution.

$$DCA_{xy} = \sqrt{(x_V - x_{ext})^2 + (y_V - y_{ext})^2}$$

 $(x_V, y_V) =$  Transverse coordinate of the primary vertex (PV) measured by the Inner Tracking System (ITS).

The total DCA distribution are decomposed into three components via a fit with the function:

 $f_{c/b/bkg}(x) = Ae^{-(x-\mu)^2/2\sigma(x)^2}$  $f(DCA_{xy}) = C \cdot f_c(DCA_{xy}) + B \cdot f_b(DCA_{xy}) + D \cdot f_{bkg}(DCA_{xy}) - D \cdot f_{bkg}(DCA_{xy})$ 

 $f_c(DCA_{xy}), f_b(DCA_{xy}), f_d(DCA_{xy}) =>$  Monte Carlo templates for charm(c), beauty(b) and background respectively. B,C,D => free parameters corresponding to the normalisation of the three components.

![](_page_14_Figure_8.jpeg)

**10th Asian Triangle Heavy-Ion Conference** 

 $(x_{ext}, y_{ext}) =$  Coordinates in the plane transverse to the beam line of the extrapolated track evaluated at the z-axis of the PV.

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_14_Picture_16.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

=> ALICE has measured the  $p_{\rm T}$ -differential production cross-section of open heavy-flavour decay muon in pp and AA (Pb-Pb & Xe-Xe) collisions in Run 1 & Run 2.

==>

=> The observed suppression is compatible with a large in-medium energy loss of heavy-quarks.

=> The suppression becomes weaker from central to peripheral collisions, reflecting the dependence of energy loss on the path length in the QGP.

=> The  $R_{AA}$  measurements have the potential to discriminate between different model calculations with different implementation of the dynamics of the heavy-quarks in the QGP.

=> The measured  $R_{AA}$  is in fair agreement with transport model calculations that consider both collisional and radiative energy loss.

### **10th Asian Triangle Heavy-Ion Conference**

The measured  $R_{AA}$  shows evidence of a strong suppression, a factor of about 4 in the 10% most central collisions with respect to the binary-scaled pp reference in both collision energies of Pb-Pb collisions while it is upto a factor of 2.5 in the case of Xe-Xe collisions.

=> Various multi-differential measurements for  $\mu \leftarrow c, \mu \leftarrow b$  are ongoing in Run 3 with much higher statistics compared to Run 2.

13-16 January 2025

![](_page_15_Picture_14.jpeg)

![](_page_16_Picture_0.jpeg)

**10th Asian Triangle Heavy-Ion Conference** 

![](_page_16_Picture_4.jpeg)

13-16 January 2025

![](_page_16_Picture_6.jpeg)