ATHIC 2025, Berhampur, Odisha, India

# Rapidity scan with DCCI at LHC energy



**Shin-ei Fujii**<sup>1</sup>, Yasuki Tachibana<sup>2</sup>, Tetsufumi Hirano<sup>1</sup> Sophia University<sup>1</sup>, Akita International University<sup>2</sup>





# Model

# Results

# **Summary and Outlook**

### **Rapidity Scan**



Expected high baryon number density in forward rapidity in high-energy collisions

M. Li and J. I. Kapusta, Phys. Rev. C **99**, 014906 (2019)

Rapidity Scan

Access high baryon chemical potential region in the QCD phase diagram



Complementary study of QCD phase diagram by BES and Rapidity Scan!

#### **QCD** phase diagram and experiments



Baryon chemical potential  $\mu_{\rm B}$ 

### **Rapidity Scan**



Expected high baryon number density in forward rapidity in high-energy collisions

M. Li and J. I. Kapusta, Phys. Rev. C 99, 014906 (2019)

Rapidity Scan

Access high baryon chemical potential region in the QCD phase diagram



Complementary study of QCD phase diagram by BES and Rapidity Scan!

#### **QCD** phase diagram and experiments



Baryon chemical potential  $\mu_{\rm B}$ 



How large baryon chemical potential is achieved as equilibrated matter in forward rapidity?

To answer the question, models must describe...

- Equilibrium and non-equilibrium components separately
- Fluidization of baryon number
- Hydrodynamic evolution of baryon number density



How large baryon chemical potential is achieved as equilibrated matter in forward rapidity?

To answer the question, models must describe...

- Equilibrium and non-equilibrium components separately
- Fluidization of baryon number
- Hydrodynamic evolution of baryon number density





### Introduction



# Results

# **Summary and Outlook**

## **Dynamical Core-Corona Initialization (DCCI) model**

Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)



PHYSICS GROUP

#### SOPHIA HADRON PHYSICS GROUP

#### **Energy-momentum source term**

Y. Kanakubo *et al.*, Phys. Rev. C **105**, 024905 (2022)

 $\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$   $j^{\nu} = -\sum_{i}^{N_{\text{parton}}} \frac{dp_{i}^{\nu}(t)}{dt} G(x - x_{i}(t))$   $p_{i}^{\nu}: \text{Four-momentum of } i_{\text{th}} \text{ parton}$   $\frac{\partial_{\mu} N_{\text{fluid}}^{\mu}}{\partial_{\mu} N_{\text{fluid}}} = \rho$   $\rho = -\sum_{j}^{N_{\text{dead}}} \frac{dB_{j}}{dt} G(x - x_{j}(t))$   $B_{j}: \text{ Baryon number of } j_{\text{th}} \text{ dead parton}$ 

 $p_i^{\nu}$ : Four-momentum of  $i_{\rm th}$  parton *G*: Gaussian function  $x_i$ : Position of  $i_{\rm th}$  parton Baryon number source term





Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)

$$\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$$

$$j^{\nu} = -\sum_{i}^{N_{\text{parton}}} \frac{dp_{i}^{\nu}(t)}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$

 $p_i^{\nu}$ : Four-momentum of  $i_{\rm th}$  parton

*G*: Gaussian function  $x_i$ : Position of  $i_{th}$  parton

Phenomenological fluidization rate per particle in core-corona picture

Low  $p_{\rm T}$  / Dense





#### Baryon number source term **New!!**



$$\partial_{\mu} N_{\rm fluid}^{\mu} = \rho$$

$$\rho = -\sum_{j}^{N_{\text{dead}}} \frac{dB_j}{dt} G\left(\boldsymbol{x} - \boldsymbol{x}_j(t)\right)$$

 $B_i$ : Baryon number of  $j_{th}$  dead parton

High  $p_{\rm T}$  / Dilute



### // P GR

#### **Energy-momentum source term**

Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)

$$\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$$

$$j^{\nu} = -\sum_{i}^{N_{\text{parton}}} \frac{dp_{i}^{\nu}(t)}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$

 $p_i^{
u}$ : Four-momentum of  $i_{
m th}$  parton

*G*: Gaussian function  $x_i$ : Position of  $i_{th}$  parton

When *i*<sub>th</sub> parton deposits all energy = dead parton

$$\partial_{\mu} N_{\rm fluid}^{\mu} = \rho$$

ρ

$$= -\sum_{j}^{N_{\text{dead}}} \frac{dB_j}{dt} G\left(\boldsymbol{x} - \boldsymbol{x}_j(t)\right)$$

Baryon number source term **New!!** 

 $B_j$ : Baryon number of  $j_{th}$  dead parton

Phenomenological fluidization rate per particle in core-corona picture

Low  $p_{\mathrm{T}}$  / Dense





Deposition of baryon number into the fluid

Thermalized baryon number in CORE



### Introduction

Model



# **Summary and Outlook**

Pb+Pb 2.76 TeV, b = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, b = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event







Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event



Temperature (longitudinal profile)



#### Temperature (transverse profile)



• Gradual formation of the core (QGP fluid) through the energy-momentum source term



#### Baryon number density (longitudinal profile)

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity





Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, b = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity





Baryon number density (longitudinal profile)

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



 Large fluctuations of baryon number density even in midrapidity





Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





#### Baryon number density (longitudinal profile)

Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon number density (transverse profile)



• Large baryon number density is realized in forward rapidities  $5 \leq |\eta_s| \leq 10$ cf.)  $y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$ 

 Large fluctuations of baryon number density even in midrapidity





• Some hypersurface element has negative baryon chemical potentials

• Significantly large baryon chemical potentials in forward rapidities

### **Rapidity-averaged freezeout hypersurface**



- Almost zero baryon chemical potential until  $|\eta_s| \le 5$ 
  - $\Rightarrow$   $\approx$  Au+Au 200 GeV
- Averaged-hypersurface in rapidity range  $5 \le |\eta_s| \le 7$  exceeds  $\mu_B = 100$  MeV

♦ ≈ Au+Au 27 GeV

• Averaged-hypersurface in rapidity range  $7 \le |\eta_s| \le 9$  exceeds  $\mu_B = 300$  MeV



### **Rapidity-averaged freezeout hypersurface**



- Almost zero baryon chemical potential until  $|\eta_s| \le 5$ 
  - $\approx$  Au+Au 200 GeV
- Averaged-hypersurface in rapidity range  $5 \le |\eta_s| \le 7$  exceeds  $\mu_B = 100$  MeV

 $\approx$  Au+Au 27 GeV

• Averaged-hypersurface in rapidity range  $7 \le |\eta_s| \le 9$  exceeds  $\mu_B = 300$  MeV

 $\approx$  Au+Au 7.7 GeV

Rapidity scan is a strong tool for exploring the QCD phase diagram!!



## Introduction

Model

# Results

# Summary and Outlook

### **Summary and Outlook**

#### SOPHI HADRC PHYSIC GROU

### Summary

- Extended the DCCI model to finite baryon number
  - descriptions of thermalized baryon number
  - Rapidity Scan!!
- Negative  $n_{\rm B}(\mu_{\rm B})$  region appears due to the depositions of anti-quarks
- At LHC energies, high baryon chemical potentials are realized in forward rapidities

### Outlook

- Centrality dependence
- Event-averaged analysis
- Baryon stopping



# Backups

### **Rapidity-averaged freezeout hypersurface**

#### $b = 6.12 \, \text{fm}$

*b* = 10.1 fm



PHYSICS

### **Rapidity-averaged freezeout hypersurface**



•  $\mu_{\rm B}$  becomes maximum in 7  $\leq |\eta_s| \leq 8$ 

cf.) 
$$y_{\text{beam}}(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}) \approx 8$$

PHYSICS





Temperature (longitudinal profile)



Pb+Pb 2.76 TeV, b = 6.12 fm Single event

#### Temperature (transverse profile)



SOPHIA

PHYSICS

Temperature (longitudinal profile)



Pb+Pb 2.76 TeV*, b* = 10.1 fm Single event

#### Temperature (transverse profile)



SOPHIA

PHYSICS

Baryon number density (longitudinal profile)

y = 0 $n_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 5 10 0  $\eta_s$ 

Pb+Pb 2.76 TeV, *b* = 6.12 fm Single event

#### Baryon number density (transverse profile)



60

PHYSICS GROUP

Baryon number density (longitudinal profile)

y = 0

 $n_{\rm B}$  [GeV]

 $\eta_s = 0$ 



Pb+Pb 2.76 TeV, *b* = 10.1 fm Single event

#### Baryon number density (transverse profile)

 $n_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 5 10 0 *y* [fm]

PHYSICS

Baryon chemical potential (longitudinal profile)

y = 0 $\mu_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.3 10 0.2 5 0.1 *x* [fm] 0 0 -0.1 -5 -0.2 -10 -0.3 -10 -5 10 0 5  $\eta_s$  $e > 0.547 \, \text{GeV}/\text{fm}^3$  Pb+Pb 2.76 TeV, *b* = 2.46 fm Single event

#### Baryon chemical potential (transverse profile)





PHYSICS

Baryon chemical potential (longitudinal profile)

y = 0 $\mu_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.1 10 0.05 5 *x* [fm] 0 -5 -0.05 -10 -0.1 -5 -10 5 10 0  $\eta_s$  $e > 0.547 \, \text{GeV}/\text{fm}^3$  Pb+Pb 2.76 TeV, b = 6.12 fm Single event

#### Baryon chemical potential (transverse profile)



63

PHYSICS

Baryon chemical potential (longitudinal profile)

y = 0 $\mu_{\rm B}$  [GeV]  $\tau = 0.60 \, \text{fm}$ 0.1 10 0.05 5 *x* [fm] 0 0 -5 -0.05 -10 -0.1 -10 -5 0 5 10  $\eta_s$  $e > 0.547 \, \text{GeV}/\text{fm}^3$  Pb+Pb 2.76 TeV, *b* = 10.1 fm Single event

#### Baryon chemical potential (transverse profile)



PHYSICS GROUP

### High baryon number density at LHC energies

### Nuclear compression + CGC

Ming Li, Ph.D thesis, U. of Minesota (2018) M. Li and J. I. Kapusta, Phys. Rev. C **99**, 014906 (2019)

Solving classical gluon fields of receding nuclear remnants

 $\Rightarrow$  Rapidity loss  $\Delta y$  of nucleons

• Nuclear compression by  $\Delta y$  $n_{\rm B}(x, y, z) \approx e^{\Delta y} \rho_{\rm A}(x, y, ze^{\Delta y})$  @high energy

M. Gyulassy and L. P. Csernai, Nucl. Phys. A 460, 723 (1986)

Extremely high baryon number density in the fragmentation regions of high-energy heavy ion collisions

#### Baryon number density of compressed Pb





Y. Kanakubo et al., Phys. Rev. C 105, 024905 (2022)





Phenomenological fluidization rate per particle in core-corona picture

 $\frac{dp_{i}^{\mu}}{d\tau} = -\sum_{j}^{N_{\text{scat}}} \rho_{i,j} \sigma_{i,j} |v_{\text{rel},i,j}| p_{i}^{\mu} \qquad \begin{array}{l} \rho_{i,j} \colon \text{Effective density of } j_{\text{th}} \text{ seen from } i_{\text{th}} \\ \sigma_{i,j} \colon \text{Cross section between } i_{\text{th}} \text{ and } j_{\text{th}} \\ v_{\text{rel},i,j} \colon \text{Relative velocity between } i_{\text{th}} \text{ and } j_{\text{th}} \end{array}$ 

Low  $p_T$  / Dense Core High  $p_T$  / Dilute Corona

### **NEOS-BQS**



**Taylor expansion using Lattice results (high T)** 

$$\frac{P}{T^4} = \frac{P_0}{T^4} + \sum_{l,m,n} \frac{x_{l,m,n}^{B,Q,S}}{l,m,n} \left(\frac{\mu_B}{T}\right)^l \left(\frac{\mu_Q}{T}\right)^m \left(\frac{\mu_S}{T}\right)^n$$

#### Hadron gas (low T)

$$P = \pm T \sum_{i} \int \frac{g_i d^3 p}{(2\pi)^3} \ln \left[ 1 \pm e^{-(E_i - \mu_i)/T} \right]$$
$$= \sum_{i} \sum_{k} (\mp 1)^{k+1} \frac{1}{k^2} \frac{g_i}{2\pi^2} m_i^2 T^2 e^{k\mu_i/T} K_2 \left(\frac{km_i}{T}\right)$$

$$\frac{P}{T^4} = \frac{1}{2} \left[ 1 - f(T, \mu_J) \right] \frac{P_{\text{had}}(T, \mu_J)}{T^4} + \frac{1}{2} \left[ 1 + f(T, \mu_J) \right] \frac{P_{\text{lat}}(T, \mu_J)}{T^4}$$



Constraints:  $n_Q = 0.4n_B$ ,  $n_S = 0$ 

 $e(T, \mu_{\rm B}) = e(0.165 \text{ GeV}, 0)$ = 0.547 GeV/fm<sup>3</sup>  $rightarrow e_{\rm sw}$  for core

### Hydrodynamic module in DCCI



#### **Energy-momentum conservation**

$$\partial_{\mu} T_{\text{fluid}}^{\mu\nu} = j^{\nu}$$
  

$$T_{\text{fluid}}^{\mu\nu} = eu^{\mu}u^{\nu} - p\Delta^{\mu\nu}$$
 ideal hydro  

$$j^{\nu} = -\sum_{i} \frac{dp_{i}^{\nu}(t)}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$

#### **Baryon number conservation**

$$\partial_{\mu} N_{\rm fluid}^{\mu} = \rho$$

$$N_{\rm fluid}^{\mu} = n_{\rm B} u^{\mu}$$
 ideal hydro

$$\rho = -\sum_{i_{\text{dead}}} \frac{dB_{i_{\text{dead}}}}{dt} G\left(\boldsymbol{x} - \boldsymbol{x}_{i_{\text{dead}}}(t)\right)$$

$$G_{\text{Milne}} = \frac{1}{\sqrt{2\pi\sigma_{\eta}^{2}\tau^{2}}} \exp\left(-\frac{\left(\eta_{s,\text{parton}} - \eta_{s,i}\right)^{2}}{2\sigma_{\eta}^{2}}\right) \times \frac{1}{2\pi\sigma_{xy}^{2}} \exp\left(-\frac{\left(x_{\text{parton}} - x_{i}\right)^{2} + \left(y_{\text{parton}} - y_{i}\right)^{2}}{2\sigma_{xy}^{2}}\right)$$

Default:  $\sigma_\eta = 0.5$  ,  $\sigma_{xy} = 0.6~{
m fm}$ 

### **RHIC-BES data**





