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Resonances as probes of the hadronic phase
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® Resonances are short-lived particles that decay via the strong interaction Regeneration
® Suitable to probe hadronic phase via regeneration and re-scattering effects ® Pseudo-elastic scattering of
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Aim is to investigate hadronic phase effects via measurement of resonances ___/ &
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momentum distribution and azimuthal anisotropy
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Observable : Particle ratios Observable : Resonance Flow d3 ~ 2m pydpydy
(Ex: K'Y/K, dIK, ...) Ex: K™ &, ...) vy = < < cos[n(pp —y;)] > >
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ALICE detector

New Fast Interaction Trigger (FIT)
. ° °
Fast Interaction Trigger (F|T) - Forward Diffractive Detector (FDD) New Muon Forward Tracker (MFT)

— Centrality/multiplicity estimation —~ Two Cherenkovarrays (FT0) - Improved muon vertex positioning

= Scintillator ring (FVO0)

Time Projection chamber (TPC)

PREEEREEA S ' &Y

- New GEM technology for readout chambers

Inner Tracking System (ITS)

= Faster electronics & continuous readout
— Tracking of charge particles

— Reconstruction of vertices o Pror el New Inner Tracking System (ITS)
N 5 = Improved pointing precision

- Less material = thinnest tracker @LHC

® Time Projection Chamber (TPC)

— Momentum measurement

— Particle identification (PID) via dE/dx

New Online-Offline (0O2) computing
infrastructure
= New framework

— Tracking of charge particles

= Online tracking and data compression

® Time Of Flight (TOF) ALICE upgrades from Run 2 to Run 3 NIM A 958, 162116, (2020)
— Particle identification (PID) via Interaction Rate for Pb — Pb Run 2 : 8 kHz » Run 3 : 50 kHz
time of flight Enhanced statistics and the highest center-of-mass energy in Run 3 provides the :

opportunity for precise measurements of resonance flow and production
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Highlights from Run 2 : Exploring hadronic phase

Phys. Lett. B 802, 135225, (2020)
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® Suppression of K*?/K in central heavy-ion collisions
® Indication of dominance of re-scattering of K™ decay
daughters over the regeneration effect
®

No suppression of ®/K over wide centrality ranges

® EPOS3 with UrQMD (accounting for hadronic effects)
reproduces the observed trend of the K*%/K and ¢/K ratios
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Hadronic phase lifetime
Phys. Lett. B 802, 135225, (2020)
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® Timespan between chemical and kinetic freeze-out is
estimated by
[K™/K] = |K™/K] X e 7K

kinetic pb—pb) chemical pp)

® Lifetime of hadronic phase smoothly increases with
multiplicity

® Lower limit of hadronic phase lifetime ~ 4-7 fmlic



Highlights from Run 2 : Hadronic phase observations

Differential yield ratios Transverse momentum spectra

Phys. Lett. B 802, 135225, (2020) Phys. Rev. C 106, 034907, (2022)
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® At low pr, for central collisions K'°/K ratio is more ® p.distributions of K™ and ¢ with blast-wave model which

suppressed than ¢/K ratio compared to peripheral (pp) does not include rescattering

collisions =» rescattering affects the low momentum particles
Blast-wave model predictions describe the p distribution

. ° ° M
At intermediate p, both ratios show enhancement for central of ¢ resonance at low p;

collisions = presence of larger radial flow in central collisions

Suppression of yield of short-lived K™ resonance relative

to blast-wave prediction consistent with observation of
dominance of rescattering effect

® At high pr, both ratios in central collisions are similar to

peripheral (pp) collisions = fragmentation is dominant hadron
production mechanism
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Highlights from Run 2 : Resonance elliptic flow

pr — differential elliptic flow
JHEPO09 (2018) 006

Effect of rescattering on flow from model
K. Nayak et al., DAE Symp.Nucl Phys. 62 (2017) 962-963
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® Mass ordering at lower p. ® Elliptic flow (1,) of short-lived K™ resonance is

® Baryon meson crossing at intermediate Pt more affected by the hadronic phase interactions

® . , than longer-lived ¢ resonance suggested by AMPT
¢ resonance scales with other mesons at high py

model predictions
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Measurement of resonances in Run 3
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e Resonances are reconstructed using the invariant mass method. .@
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 The shape of the uncorrelated background is estimated by the event-mixing technique. RN ‘@
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Elliptic flow calculation in Run 3

® Elliptic flow (v,) = < < cos[2(¢p — ypp)] > > Run 3, Pb—Pb 5.36 TeV
° : : N
Event plane angle () is calculated from event flow vector () and Q is <§ af e
calculated using FTOC detector. < 03l il
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® v, is calculated by Invariant mass fit method. 50 014F
O (M) = A (1150, VS + [ 1= A () [ 012
A (my,) = NS (my, ) INSE¥BE (m, ) oisf

® By simultaneous fit of invariant mass and total v, distribution, elliptic

flow of K™V is calculated for the first time in ALICE Stay tuned for more Run 3 results...
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sSummary & Goals in Run 3

Summary

' Run 2 observatlons show the suppression of shcrt—llved K*O resonances but no suppression fcr Ionger—llved 'J
¢ resonance suggests evidence for dominance of the re-scattering over the regeneration effect.

: Presented ¢ resonance signal in Pb-Pb collisions at  /syn = 5.36 TeV, using 2 billion events from the latest
. Run 3 data.

i® Reported first look of elliptic flow (1,) signal of K™ resonance for the first time using Run 3 Pb—-Pb data at

S = 5.36 TeV.

Goals

‘ ‘ Transverse momentum ( pT ) spectra pT mtegrated yleld (pT) and partlcle ratlos wull be calculated to get ;
insights into the hadronic phase.

’ Centrality and p dependence of K™ and ¢ elliptic flow will be studied and compared with other hadrons ‘
| to explore the impact of final-state interactions on resonance flow. ’
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Lifetime of hadronic phase

K /K] x e

*() —
/K] kinetic pb-pb) K chemical ep

® Here 7+ is taken as4.16fm/c ignoringany mediummodification

® Assumption that all K* that decay before kinetic freeze-out are lost due to rescattering effects and
there is no regeneration effect between kinetic and chemical freeze-out

® All assumptions leads to lower limit for timespan of hadronic phase.

® 1 boosted by a Lorentz factor (~ 1.65 for p—Pb collisions and 1.75 forPb—Pb collision) as a function of

(dN_ch/dn), Neglecting higher order terms, the Lorentz factor is estimated as \/1 + ({pp)/me)® , Here m is
the rest mass of the resonance and <{pT) is used asan approximation for p for the measurements at

midrapidity.

® decrease in the kinetic freeze-out temperature from peripheral to central collisions.
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pr dependence of rescattering

e Ratio of resonance yields relative to the ones of kaons and pions can shed light on the shapes of the pT
distributions of mesons with different mass and quark content.

* resonances experience a larger radial flow effect.

* blast-wave model using parameters obtained from the combined fit to n%, KX, and p(p’) spectra.

e blast-wave function is a three parameter simplified hydrodynamic model, which assumes that the
emitted particles are locally thermalized in a uniform-density source at a kinetic freezeout temperature

Tkin and move with a common collective transverse radial flow velocity field.

1 dN R pr sinhp mt coshp
X r dr mr I K;
pr dpr 0 Txin Txin

* The expected distributions are normalized so that their integrals are equal to the measured yield of
charged kaons

Sarjeeta Gami ATHIC - 2025

9/9



