Study of resonances flow and production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.36$ TeV with ALICE

Sarjeeta Gami, on behalf of the ALICE collaboration

National Institute of Science Education and Research (HBNI), Jatni, India

10th Asian Triangle Heavy-Ion Conference - ATHIC 2025

Outline ➡ Motivation ➡ ALICE detector Highlights from Run 2 results ➡ First look of Run 3 results Summary and outlook

Resonances as probes of the hadronic phase

- Resonances are short-lived particles that decay via the strong interaction
- Suitable to probe hadronic phase via regeneration and re-scattering effects

Aim is to investigate hadronic phase effects via measurement of resonances

Sarjeeta Gami

 $(Ex: K^{*0}, \phi, ...)$

ATHIC – 2025

Regeneration

Pseudo-elastic scattering of decay products -> Enhanced yield

Re-scattering

- Elastic scattering or pseudoelastic scattering of decay products
- Not reconstructed through invariant mass -> Reduced yield

 $E\frac{d^3N}{d^3p} = \frac{1}{2\pi}\frac{d^2N}{p_Tdp_Tdy}\left(1 + \sum_{n=1}^{\infty} 2\nu_n \cos\left[n\left(\phi - \Psi_r\right)\right]\right)$

 $v_n = \langle \cos[n(\phi - \psi_r)] \rangle \rangle$

- **Fast Interaction Trigger (FIT)**
 - \rightarrow Centrality/multiplicity estimation
- **Inner Tracking System (ITS)**
 - → Tracking of charge particles
 - \rightarrow Reconstruction of vertices
- Time Projection Chamber (TPC)
 - → Momentum measurement
 - \rightarrow Particle identification (PID) via dE/dx
 - \rightarrow Tracking of charge particles
- Time Of Flight (TOF)
 - → Particle identification (PID) via
 - time of flight

Sarjeeta Gami

- Scintillator ring (FV0)

ALICE upgrades from Run 2 to Run 3 Interaction Rate for Pb – Pb Run 2 : 8 kHz \rightarrow Run 3 : 50 kHz Enhanced statistics and the highest center-of-mass energy in Run 3 provides the opportunity for precise measurements of resonance flow and production

ALICE detector

Highlights from Run 2 : Exploring hadronic phase

- Suppression of K^{*0}/K in central heavy-ion collisions
- Indication of dominance of re-scattering of K^{*0} decay daughters over the regeneration effect
- **No suppression of \phi/K over wide centrality ranges**
- **EPOS3** with **UrQMD** (accounting for hadronic effects) reproduces the observed trend of the K^{*0}/K and φ/K ratios

Hadronic phase lifetime

Phys. Lett. B 802, 135225, (2020)

• Timespan between chemical and kinetic freeze-out is estimated by

$$\left[K^{*0}/K\right]_{\textbf{kinetic} (Pb-Pb)} = \left[K^{*0}/K\right]_{\textbf{chemical} (pp)} \times e^{-\tau/\tau_{K^{*0}}}$$

• Lifetime of hadronic phase smoothly increases with multiplicity

• Lower limit of hadronic phase lifetime ~ 4-7 fm/c

ATHIC – 2025

Highlights from Run 2 : Hadronic phase observations

Differential yield ratios

Phys. Lett. B 802, 135225, (2020)

- At low $p_{\rm T}$, for central collisions ${\rm K}^{*0}/{\rm K}$ ratio is more p_{T} distributions of K^{*0} and ϕ with blast-wave model which suppressed than ϕ/K ratio compared to peripheral (pp) does not include rescattering collisions -> rescattering affects the low momentum particles
- At intermediate $p_{\rm T}$, both ratios show enhancement for central collisions -> presence of larger radial flow in central collisions
- At high $p_{\rm T}$, both ratios in central collisions are similar to peripheral (pp) collisions -> fragmentation is dominant hadron production mechanism

- Blast-wave model predictions describe the $p_{\rm T}$ distribution of ϕ resonance at low $p_{\rm T}$
- Suppression of yield of short-lived K^{*0} resonance relative to blast-wave prediction consistent with observation of dominance of rescattering effect

Highlights from Run 2 : Resonance elliptic flow

 $p_{\rm T}$ – differential elliptic flow

JHEP09 (2018) 006

- Baryon meson crossing at intermediate $p_{\rm T}$
- ϕ resonance scales with other mesons at high $p_{\rm T}$

Effect of rescattering on flow from model

K. Nayak et al., DAE Symp.Nucl.Phys. 62 (2017) 962-963

 Elliptic flow (v₂) of short-lived K^{*0} resonance is more affected by the hadronic phase interactions than longer-lived φ resonance suggested by AMPT model predictions

Resonances are reconstructed using the invariant mass method.

$$M_{\rm K^+K^-(\phi)} = \sqrt{(E_{\rm K^+} + E_{\rm K^-})^2 - (\vec{p}_{\rm K^+} + \vec{p}_{\rm K^-})^2}$$

The shape of the uncorrelated background is estimated by the event-mixing technique.

Sarjeeta Gami

Measurement of resonances in Run 3

- K^+ B.R. ~ $(48.9 \pm 0.5)\%$ Φ Lifetime ~ $46.3 \pm 2.08 \text{ fm/}c$ $M = 1019.461 \pm 0.020 \text{ MeV}/c^2$ $\Gamma = 4.26 \pm 0.04 \text{ MeV}/c^2$
- Signal is fitted with Voigtian function and residual background is fitted with second order polynomial.
- **Raw yields** are calculated by integrating the fitting function for different $p_{\rm T}$ intervals and different centrality classes.

Elliptic flow calculation in Run 3

- Elliptic flow $(v_2) = \langle \cos[2(\phi \psi_{RP})] \rangle \rangle$
- Event plane angle (ψ_2) is calculated from event flow vector (Q) and Q is calculated using FT0C detector.

$$\psi_2 = \frac{1}{2} \tan^{-1} \left(\frac{Q_y}{Q_x} \right) \qquad Q_x = \sum_i w_i \cos(2\phi_i) \qquad Q_y =$$

where the sum runs over the 112 channels i of the FT0C detector

- w_i : amplitude of the i^{th} cannel of FIT detector
- ϕ_i : position of the i^{th} cannel of FIT detector
- v_2 is calculated by Invariant mass fit method. $v_2^{\text{tot}}(m_{\text{inv}}) = A(m_{\text{inv}})v_2^{\text{Sig}} + \left|1 - A(m_{\text{inv}})\right|v_2^{\text{Bg}}$ $A(m_{inv}) = N^{Sig}(m_{inv})/N^{Sig+Bg}(m_{inv})$
- By simultaneous fit of invariant mass and total v_2 distribution, elliptic flow of K^{*0} is calculated for the first time in ALICE

Sarjeeta Gami

 $\sum w_i \sin(2\phi_i)$

Stay tuned for more Run 3 results...

Summary

- ϕ resonance suggests evidence for dominance of the re-scattering over the regeneration effect.
- Run 3 data.

 $\sqrt{s_{\rm NN}}$ = 5.36 TeV.

Goals

- insights into the hadronic phase.
- Centrality and p_T dependence of K^{*0} and ϕ elliptic flow will be studied and compared with other hadrons to explore the impact of final-state interactions on resonance flow.
- Various model studies will be performed.

Sarjeeta Gami

Run 2 observations show the suppression of short-lived ${
m K}^{st 0}$ resonances but no suppression for longer-lived

• Presented ϕ resonance signal in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.36 TeV, using 2 billion events from the latest

Reported first look of elliptic flow (v_2) signal of K^{*0} resonance for the first time using Run 3 Pb–Pb data at

Transverse momentum ($p_{\rm T}$) spectra, $p_{\rm T}$ integrated yield, $\langle p_{\rm T} \rangle$ and particle ratios will be calculated to get

Lifetime of hadronic phase

$$\left[\frac{K^{*0}}{K}\right]_{kinetic (Pb-Pb)} = \left[\frac{K^{*0}}{K}\right]_{chemical (pb-Pb)}$$

- Here $\tau_{K^{*0}}$ is taken as 4.16 fm/c ignoring any medium modification
- there is no regeneration effect between kinetic and chemical freeze-out
- All assumptions leads to lower limit for timespan of hadronic phase.
- midrapidity.
- decrease in the kinetic freeze-out temperature from peripheral to central collisions.

(op) × $e^{-\tau/\tau_{K^{*0}}}$

• Assumption that all K* that decay before kinetic freeze-out are lost due to rescattering effects and

• τ boosted by a Lorentz factor (~ 1.65 for p–Pb collisions and 1.75 forPb–Pb collision) as a function of $\langle dN_ch/d\eta \rangle$, Neglecting higher order terms, the Lorentz factor is estimated as $\sqrt{1 + (\langle p_T \rangle/mc)^2}$, Here m is the rest mass of the resonance and $\langle pT \rangle$ is used as an approximation for p for the measurements at

- Ratio of resonance yields relative to the ones of kaons and pions can shed light on the shapes of the pT distributions of mesons with different mass and quark content.
- resonances experience a larger radial flow effect.
- blast-wave model using parameters obtained from the combined fit to π^{\pm} , K[±], and p(p⁻) spectra.
- •blast-wave function is a three parameter simplified hydrodynamic model, which assumes that the emitted particles are locally thermalized in a uniform-density source at a kinetic freezeout temperature Tkin and move with a common collective transverse radial flow velocity field.

$$\frac{1}{p_{\rm T}}\frac{dN}{dp_{\rm T}} \propto \int_0^R r \, dr \, m_{\rm T} \, I_0 \left(\frac{p_{\rm T} \, \sinh\rho}{T_{\rm kin}}\right) K_1 \left(\frac{m_{\rm T} \cosh\rho}{T_{\rm kin}}\right)$$

•The expected distributions are normalized so that their integrals are equal to the measured yield of charged kaons

