Fluctuations and correlations of net-conserved quantities at LHC energies with ALICE

Swati Saha (On behalf of the ALICE collaboration)

National Institute of Science Education and Research, Jatni, India Homi Bhabha National Institute, Mumbai, India

10th Asian Triangle Heavy-Ion Conference

13th - 16th January, 2025, Mayfair Palm Beach Resort, Berhampur, Odisha, India

QCD phase diagram and phase structure

A. Pandav et al., Prog. Part. Nucl. Phys. 125 (2022) 103960

Phase structure	Remarks
Phases	De-confined: Quark–Gluon Plasma Confined: Hadron gas
Nature of transition	 Crossover at low μ_B First order at large μ_B Second order – Critical point
Transition temperature	Phase boundary as a function of $\mu_{_{ m B}}$
Freeze-out	Chemical freeze-out Kinetic freeze-out

LHC experiments

$$\mu_{\rm B} \sim 0$$

Fluctuations and correlations

- Fluctuations and correlations of net-conserved charges such as net-baryon (B), net-electric charge (Q), and net-strangeness (S) number can **provide valuable insights into the QCD phase structure**.
- □ They are sensitive probes for the equation of state and are directly **related to the QCD thermodynamic susceptibilities**. They can be studied in the Hadron Resonance Gas (HRG) model and lattice QCD simulations.

Theory
$$\chi_{B,Q,S}^{l,m,n} = \frac{1}{VT^3} \sigma_{B,Q,S}^{l,m,n}$$
 Experiment V, $T \rightarrow$ system's volume and temperature

□ Observables are diagonal and off-diagonal cumulants of net-conserved charges (B, Q, and S).

 $\sigma_{\alpha}^{2} = \langle (\delta N_{\alpha})^{2} \rangle$ $\sigma_{\alpha,\beta}^{11} = \langle (\delta N_{\alpha})(\delta N_{\beta}) \rangle$ $\delta N_{\alpha} = (N_{\alpha^{+}} - N_{\alpha^{-}}) - \langle (N_{\alpha^{+}} - N_{\alpha^{-}}) \rangle$

α, β can be B, Q, or S
 net-proton and net-kaon considered as proxy of net-baryon and net-strangeness number

The **ratio of the cumulants** cancels the *V* and *T* dependence.

$$C_{\rm BS} = \frac{\sigma_{\rm BS}^{11}}{\sigma_{\rm S}^2}, \quad C_{\rm QS} = \frac{\sigma_{\rm QS}^{11}}{\sigma_{\rm S}^2}, \quad C_{\rm QB} = \frac{\sigma_{\rm QB}^{11}}{\sigma_{\rm B}^2}$$

Lattice QCD and magnetic field

Lattice QCD studies with magnetic fields show a significant effect on fluctuations of conserved charges.

Can we test this in experiments?

Lattice QCD and magnetic field

Lattice QCD studies with magnetic fields show a significant effect on fluctuations of conserved charges.

Can we test this in experiments?

ALICE detector

Run 2 data **Pb–Pb collisions at** $\sqrt{s_{NN}}$ = 5.02 TeV collected in 2015 Statistics: 80 million (good events)

THIC 202

Results

2nd and 3rd order fluctuations of net-proton

□ Thermal-FIST^[1,2] canonical ensemble (CE) predictions for baryon conservation in a correlation volume of 3dV/dy describes the measurements ⇒ long-range correlations

2nd and 3rd order fluctuations of net-proton

ALICE, arXiv:2405.19890

- Thermal-FIST^[1,2] canonical ensemble (CE) predictions for baryon conservation in a correlation volume of 3dV/dy describes the measurements \Rightarrow long-range correlations
- Net-proton cumulants consistent with LQCD calculations up to 3rd order

Correlations among net-pion, net-kaon & net-proton

- Significant effect of resonance decays
- Thermal-FIST^[1,2] canonical ensemble (CE) predictions for Q, B, and S conserved in a correlation volume of 3dV/dy describe the measurements better

Effect of correlation volume

Q Sensitive to the correlation volume (V_c) in which Q, B, S are conserved exactly

A quantitative estimation of V_c by chi-square minimization using Thermal-FIST^[1,2] predictions for different V_c values give $V_c \sim 2.6 dV/dy$

Effect of initial magnetic field on fluctuations

Measurement of net-proton number fluctuations only up to 3rd order.

- □ The centrality dependence of correlations among net-charge, net-proton, and net-kaon are presented in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 5.02 TeV with ALICE.
- Experimental measurements show contributions from (a) resonance decays, (b) conservation of charges and (c) long-range correlations.

□ Interesting results for observable claimed to be sensitive to initial magnetic field effects

- Data shows a similar trend as in LQCD
- Whether imprints of a strong magnetic field exist in the final stage of heavy-ion collisions?

Measurement of net-proton number fluctuations only up to 3rd order.

- □ The centrality dependence of correlations among net-charge, net-proton, and net-kaon are presented in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 5.02 TeV with ALICE.
- Experimental measurements show contributions from (a) resonance decays, (b) conservation of charges and (c) long-range correlations.
- □ Interesting results for observable claimed to be sensitive to initial magnetic field effects
 - Data shows a similar trend as in LQCD
 - Whether imprints of a strong magnetic field exist in the final stage of heavy-ion collisions?

Thank you for your attention

Backup

STAR measurements of correlations

Measurements of STAR experiment at RHIC

Comparison to HIJING model

Measurements are compared to predictions from the HIJING^[1] model

- **G** Significant effect of resonance decays
- □ Incomplete implementation of resonance decays in the HIJING model
- **HIJING** model fails to explain measurements for $C_{\text{p},\text{K}}$ and $C_{\text{Q},\text{p}}$

[1] X.-N. Wang et al., Phys. Rev. D 44 (1991) 3501-3516

Energy dependence of correlations

Decrease in correlations with increase in beam energy

Analysis details

Corrections & Uncertainties:

→ Suppress volume fluctuations by Centrality Bin Width Correction (CBWC)

$$C_n = \frac{\sum_a n_a C_{n,a}}{\sum_a n_a}, \quad \delta_{C_n} = \sqrt{\frac{\sum_a (n_a \delta_{C_{n,a}})^2}{(\sum_a n_a)^2}} \quad \Longrightarrow \quad n_a \text{ and } C_{n,a} \text{ are number of events and$$

→ Efficiency correction: Considering the Binomial model of detector response, analytical expressions in Ref^[1,2] are used to correct the cumulants

[1] T. Nonaka et al., *Phys. Rev. C* 95, 064912 (2017) [2] X. Luo et al., *Phys. Rev. C* 99, 044917 (2019)

- → Statistical uncertainty: Bootstrap Sampling Method
- → Systematic uncertainties: Varying event selection, track selection, and PID criteria

THIC 202

Effect of charge conservation

Charge conservation plays an important role in these correlations

The FIST \rightarrow Thermal-FIST^[1,2]

