

Development of an ALPIDE telescope and its test results at PF-AR in KEK

Kyungrim Woo¹, In-Kwon Yoo¹

On behalf of the ALICE Collaboration

Hangil Jang¹, Hyunji Lim¹, Jiyoung Kim², Minjae Kim¹, Sanghoon Lim¹, Yoonha Hong¹, Seunghwan Yang², Sungwoon Choi¹

Pusan National University
Inha University

10th Asian Triangle Heavy-Ion Conference

For the KoALICE-ITS3 team

Introduction

■ ITS3 upgrade

MAPS(Monolithic Active Pixel Sensors)

January 13-16, 2025

- Truly cylindrical
 - Bent Si Detector
- 65 nm Technology
 - Stitching
- Low power consumption
 - ► <20 mW/cm²
 - ► Air cooling
- Less material budget
- Closer to interaction point

▶ 23 mm→ 19 mm

Various chip R&D activities are ongoing -Bending, stitching, cooling, etc

Motivation

■ Chip R&D

- In Lab measurements
 - Tuning of operational parameters
 - Pulse and noise measurements
 - Measurement with a source

- In Test beam
 - ► Detection efficiency/Fake Hit Rate vs. threshold for digital chips
 - Particle tracks reconstructed by telescope
 - Association of clusters in DUT with tracks

Korean ALICE Telescope (KATS)

Al Box Dimension

■ Full Feed through connect

- → BNC to BNC : scintillator signal out
- → USB-B to USB-A : communication with computer
- LEMO to LEMO : apply back bias voltage to boards
- Banana to flat : supply power for devices

Adjustable Inner modules

Moving stage

KATS operation setup

Trigger chain Main Trigger signal - Trigger signal - Trigger signal - Busy signal - Busy signal - Busy signal REFs REFs DUT CE65 BENT TRG Trigger board × board REFs × REFs REFs × TRG : OFF DUT : Start of trigge Logic : Ch0 & Ch1 & Not Bus Logic : Ch0 & Ch1 & Not Bus APTS-SF **Bent ALPIDE**

Bent ALPIDE

■ DAQ and analysis framework

<text><text><list-item>

January 13-16, 2025

KATS operation test in KEK

Beam at PF-AR in KEK

- Particle : electron
- Momentum : 0.5 5 GeV/*c*
- Size : roughly 8 x 2 cm² (x y size of beam)
- Beam rate
 - ▶ Official: 156 Hz/cm² @ 3 GeV/ c
 - Measured with scintillator module
 - 130 Hz/cm² @ 3GeV/ c
 - 62 Hz/cm² @ 5GeV/ *c*
 - ► Too low for APTS-SF chip

Experimental target : Understanding the functionality of KATS

• Incident angle scan

• DUT test setup

KATS operation test in KEK

- Result Incident angle scan
 - Tracking performance

z Position (mm)

125

100

75

KATS operation test in KEK

Result – Bent ALPIDE test

Inefficiency = number of non-associated tracks / total tracks

► Consistent result with DESY experiment at 0V, R =18 mm

Summary & Outlook

- The ITS3 upgrade pioneers wafer-scale, bent silicon detector
- KATS was developed for various test beam setups
- Alignment module performs effectively within the practical range of misalignment of detectors
- Confirmed KATS can reconstruct particle tracks well enough
- Bent ALPIDE test results are comparable to those from the DESY experiment
- Planning to upgrade with a different type of the reference detector
- Planning to beam test with other R&D chips

Thank you