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Why event-by-
event fluctuation? 

https://indico.bnl.gov/event/8784/contributions/39137/attachments/29686/46306/2020_RM_BNLLecture.pdf
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Fluctuations help to characterise the properties of the 
“bulk” of the system. 
They are closely related to the dynamics of the phase 
transitions.
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    Observable: Two-Particle Correlator
Minijets

Cov(x, y) = E[x, y] − E[x]E[y]

F(k) = e−λ λk

k!
⟹ < F(k) > = λ

⟹ λ1λ2 − λ1λ2 = 0

C=0 No 
statistical  
fluctuation Presence of correlation

Resonance 
decays

Statistical fluctuation:  

No 
correlation

In peripheral Pb–Pb collisions, fluctuations are in very good 
agreement with the extrapolation of a power-law fit to pp 
At larger multiplicities, the Pb–Pb results deviate from the 
pp extrapolation

Key physics goals: System size, energy and event shape 
dependence of event-by-event fluctuations at the LHC
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A Large Ion Collider Experiment

System Years
Run 1 | Run 2 √sNN (TeV)

Pb—Pb 2010, 2011  
2015, 2018

2.76
5.02

Xe—Xe 2017 5,44

p—Pb 2013
2016

5.02
5.02, 8.16

pp 2009-2013
2015-2018

0.9, 2.76, 7, 8
5.02, 13

21

(Run 2 Schematics)
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A Large Ion Collider Experiment

Large collision 
systems

System Years
Run 1 | Run 2 √sNN (TeV)
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A Large Ion Collider Experiment

Small collision 
systems
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systems

24

A Large Ion Collider Experiment
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Evolution of the correlator strength with 
charged-particle density as a function 
of (a) beam energy (b) system size

Modest increase with beam energy 
in mid to central Pb-Pb collisions. 

pp values are similar to Pb—Pb 
and Xe—Xe collisions in 20-45 and 
follows a similar slope up to 600. 

Results: Energy and system size scan

25

ALICE, arXiv:2411.09334 [nucl-ex]

https://arxiv.org/abs/2411.09334
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corresponds to a simple superposition scenario 

26

HJING exhibits perfect scaling as expected from a 
model with no re-interactions or re-scattering.  

Significant deviation of Pb—Pb data from HIJING in 
central collisions. 


Both AMPT versions exhibit a pronounced fall-off in 
central collisions which is in qualitative agreement 
with the data.

∝ ⟨dNch/dη⟩b (b = − 0.5)

Results: model comparisons

Power-law fit:

ALICE, arXiv:2411.09334 [nucl-ex]

https://arxiv.org/abs/2411.09334
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(Model comparison)

• pp : seems to have perfect scaling for high 
multiplicity. 

• A—A : Scaling clearly violated in mid-to central 
collisions: anticipated from strong radial flow, flow 
velocity fluctuations and temperature fluctuations. 

• Both AMPT versions exhibit a pronounced fall-off 
in central collisions which is in qualitative 
agreement with the data. 

Evolution of the correlator strength scaled by the 
charged particle density as a function of 

 in pp and A—A collisions:  
Straight line shows perfect scaling.

⟨dNch/dη⟩

Results: system size scan

ALICE, arXiv:2411.09334 [nucl-ex]

https://arxiv.org/abs/2411.09334
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ALICE, arXiv:2411.09334 [nucl-ex]

What could be the source of deviation from perfect 
scaling in heavy-ion collisions ?

Radial flow or presence of jets ???
Let’s have a look at the smallest system at the LHC, 
                           i.e. pp collisions

https://arxiv.org/abs/2411.09334
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Transverse spherocity discriminates between hard and soft processes. 

1. Jetty: Back-to-back structure, indication of hard QCD (High     )

2. Isotropic: enhances UE, soft QCD (Low      )

Event-shape Variable: This variable ranges from 0 for pencil-
like events to a maximum of 1 for circularly symmetric 
events.

Q2

Q2

 is a two-dimensional unit vector in the transverse plane ̂n

Transverse spherocity: 
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Event shapes are 
characterized using 
transverse spherocity 
S0. 

A. Khuntia, S. Tripathy, A. Bisht and R. Sahoo,

J. Phys. G48, 035102 (2021)

     Transverse Spherocity dependent study of mean-pT fluctuations



14.01.2025
 Tulika Tripathy
30

(Model comparison)

• The presence of jets enhances the 
magnitude of the correlator by about 20%.

• Particles from jets, being emitted in a 
“narrow” cone, are more correlated on 
average than other particles: the correlator 
strength is thus enhanced significantly by 
the presence of jets in the events.

Evolution of  with the spherocity of collisions measured as 

function of the spherocity in pp collisions at 5.02 TeV.

⟨⟨ΔpT1ΔpT2⟩⟩/⟨⟨pT⟩⟩

30

     Transverse Spherocity dependent study of mean-pT fluctuations

ALICE, arXiv:2411.09334 [nucl-ex]

https://arxiv.org/abs/2411.09334
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• PYTHIA 6 significantly underestimates the magnitude of correlation in general.

• PYTHIA 8 and EPOS-LHC reproduce the data rather well in both jetty and isotropic events. 

   Comparison of correlator vs spherocity classes with models
ALICE, arXiv:2411.09334 [nucl-ex]

https://arxiv.org/abs/2411.09334
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(Model comparison)

Scaling violation of the strength of the correlator (vs. particle density) seen in 
both Xe—Xe and Pb—Pb collisions; 
Correlator strength shows very modest dependence on collision system 
size; 
Clear dependence on collision energy observed when studied as a function 
of density (multiplicity);
Clear dependence on spherocity is observed. Jetty events show higher 
fluctuations as compared to isotropic events due to presence of jets.

Summary

32

Thank you for your attention


