

System size, energy and event shape dependence of the mean transverse momentum fluctuations with ALICE at the LHC

Tulika Tripathy

(on behalf of the ALICE Collaboration) Laboratoire de Physique de Clermont Auvergne (LPCA), UCA, **Clermont Ferrand, France**

Based on ALICE, arXiv:2411.09334 [nucl-ex]

10th Asian Triangle Heavy-Ion Conference - ATHIC 2025 Gopalpur, 13-17 January

Why event-byevent fluctuation?

14.01.2025

Introduction and motivation

Tulika Tripathy

Why event-byevent fluctuation?

https://indico.bnl.gov

Why event-byevent fluctuation?

A large number of particles per event

https://indico.bnl.gov

Tulika Tripathy

Why event-byevent fluctuation?

A large number of particles per event

https://indico.bnl.gov

Thermodynamic state

Why event-byevent fluctuation?

A large number of particles per event

https://indico.bnl.gov

Thermodynamic state

Why event-byevent fluctuation?

A large number of particles per event

14.01.2025

https://indico.bnl.gov

Thermodynamic Local temperature state (T_{chem})

The energy and particles can be transferred: Grand canonical ensemble

Why event-byevent fluctuation?

A large number of particles per event

Irregular behaviour of *C* could be a characteristic of phase transition.

. Stodolsky, Phys. Rev. Lett. 75, 1044

https://indico.bnl.gov

Thermodynamic Local temperature state $(T_{\rm chem})$

> The energy and particles can be transferred: Grand canonical ensemble

Irregular behaviour of *C* is the characteristic of phase transition.

L. Stodolsky, Phys. Rev. Lett. 75, 1044

14.01.2025

Introduction and motivation

The energy and particles can be exchanged: Grand canonical ensemble

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$

14.01.2025

Introduction and motivation

Tulika Tripathy

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$ $\implies \langle f(E) \rangle \propto T$

14.01.2025

Introduction and motivation

Tulika Tripathy

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$ $\implies \langle \mathbf{f}(E) \rangle \propto T$ $\langle p_{\rm T} \rangle$ is a proxy for a local $E = m_{\rm T} \ coshy$ temperature of the $m_{\rm T} = \sqrt{m^2 + p_{\rm T}^2}$ system.

14.01.2025

Introduction and motivation

Tulika Tripathy

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$ $\implies \langle f(E) \rangle \propto T$ $\langle p_{\rm T} \rangle$ is a proxy for a local $E = m_{\rm T} \ coshy$ $m_{\rm T} = \sqrt{m^2 + p_{\rm T}^2}$ temperature of the system.

14.01.2025

Introduction and motivation

		Ľ

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$ $\implies \langle f(E) \rangle \propto T$ $\langle p_{\rm T} \rangle$ is a proxy for a local $E = m_{\rm T} \ coshy$ temperature of the $m_{\rm T} = \sqrt{m^2 + p_{\rm T}^2}$ system.

14.01.2025

Tulika Tripathy

Observable: Two-particle correlator The p_{T} distribution can be described by: $f(E) = \frac{1}{Ae^{E/kT}}$ $\implies \langle f(E) \rangle \propto T$ $\langle p_{\rm T} \rangle$ is a proxy for a local $E = m_{\rm T} \ coshy$ temperature of the $m_{\rm T} = \sqrt{m^2 + p_{\rm T}^2}$ system.

14.01.2025

Tulika Tripathy

Observable: Two-particle correlator

Statistical fluctuation

Tulika Tripathy

Tulika Tripathy

14.01.2025

A Large Ion Collider Experiment

System	Years Run 1 I Run 2	√ <i>s</i> _{NN} (TeV)	
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	
Xe—Xe	2017	5,44	
p-Pb	2013 2016	5.02 5.02, 8.16	
рр	2009-2013 2015-2018	0.9, 2.76, 7, 8 5.02, 13	

14.01.2025

A Large Ion Collider Experiment

System	Years Run 1 I Run 2	√ <i>s</i> _{NN} (TeV)	
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	Large
Xe—Xe	2017	5,44	syst
p-Pb	2013 2016	5.02 5.02, 8.16	
рр	2009-2013 2015-2018	0.9, 2.76, 7, 8 5.02, 13	

14.01.2025

A Large Ion Collider Experiment

System	Years Run 1 I <mark>Run 2</mark>	$\sqrt{s_{NN}}$ (TeV)	
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	
Xe—Xe	2017	5,44	
p-Pb	2013 2016	5.02 5.02, 8.16	Small
рр	2009-2013 2015-2018	0.9, 2.76, 7, 8 <u>5.02</u> , 13	sys

14.01.2025

Tulika Tripathy

(Run 2 Schematics)

collision stems

14.01.2025

Results: Energy and system size scan

Modest increase with beam energy in mid to central Pb-Pb collisions.

pp values are similar to Pb—Pb and Xe-Xe collisions in 20-45 and follows a similar slope up to 600.

Evolution of the correlator strength with charged-particle density as a function of (a) beam energy (b) system size

ALICE, <u>arXiv:2411.09334</u> [nucl-ex]

Results: model comparisons

14.01.2025

- $\propto \langle dN_{ch}/d\eta \rangle^{b}$ (b = -0.5) Power-law fit:
- corresponds to a simple superposition scenario
 - HJING exhibits perfect scaling as expected from a model with no re-interactions or re-scattering.
 - Significant deviation of Pb—Pb data from HIJING in central collisions.
 - Both AMPT versions exhibit a pronounced fall-off in central collisions which is in qualitative agreement with the data.

ALICE, <u>arXiv:2411.09334</u> [nucl-ex]

Results: system size scan

14.01.2025

- pp : seems to have perfect scaling for high multiplicity.
- A-A: Scaling clearly violated in mid-to central collisions: anticipated from strong radial flow, flow velocity fluctuations and temperature fluctuations.
- Both AMPT versions exhibit a pronounced fall-off in central collisions which is in qualitative agreement with the data.

Evolution of the correlator strength scaled by the charged particle density as a function of $\langle dN_{ch}/d\eta \rangle$ in pp and A—A collisions: Straight line shows perfect scaling.

Results: system size scan

14.01.2025

Tulika Tripathy

- pp : seems to have perfect scaling for high multiplicity.
- A-A: Scaling clearly violated in mid-to central collisions: anticipated from strong radial flow, flow velocity fluctuations and temperature fluctuations.

What could be the source of deviation from perfect scaling in heavy-ion collisions ?

Radial flow or presence of jets ???

Let's have a look at the smallest system at the LHC, pp collisions I.e.

(an_{ch}/u// Straight line shows perfect scaling.

Transverse spherocity:

- 2. Isotropic: enhances UE, soft QCD (Low Q^2)

Transverse Spherocity dependent study of mean-p_T fluctuations

function of the spherocity in pp collisions at 5.02 TeV.

ALI-PUB-588316

14.01.2025

- The presence of jets enhances the magnitude of the correlator by about 20%.
- Particles from jets, being emitted in a "narrow" cone, are more correlated on average than other particles: the correlator strength is thus enhanced significantly by the presence of jets in the events.

ALICE, <u>arXiv:2411.09334</u> [nucl-ex]

 $\sqrt{\langle \langle \Delta p_{\rm T1} \Delta p_{\rm T2} \rangle \rangle / \langle \langle p_{\rm T} \rangle \rangle}$ with the spherocity of collisions measured as

Comparison of correlator vs spherocity classes with models

- PYTHIA 6 significantly underestimates the magnitude of correlation in general.
- PYTHIA 8 and EPOS-LHC reproduce the data rather well in both jetty and isotropic events.

14.01.2025

Tulika Tripathy

tude of correlation in general. ther well in both jetty and isotropic events.

- Scaling violation of the strength of the correlator (vs. particle density) seen in both Xe—Xe and Pb—Pb collisions;
- Our Correlator strength shows very modest dependence on collision system size;
- Output Clear dependence on collision energy observed when studied as a function of density (multiplicity);
- Output Clear dependence on spherocity is observed. Jetty events show higher fluctuations as compared to isotropic events due to presence of jets.

your attention

