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High energy heavy-ion(HI) collision: “The Little Bang”

Shen, Heinz, arXiv:1507.01558

Boiling water : 102 K Core of the Sun : 107 K QGP ∼ 212 MeV ≡ 1012 K !!
Gardim et al. Nature Physics 16 , 615–619
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Classical probe of collectivity : Anisotropic flow
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PHOBOS arXiv:0711.3724 U. Heinz, arXiv:0810.5529 BNL: RHIC

Asymmetry in
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fireball
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Modeling momentum anisotropy as fourier expansion

dN
dpT dφ ∝ 1 + 2v2 cos [2(φ−Ψ2)] + 3v3 cos [3(φ−Ψ3)] + . . .

elliptic flow triangular flow
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Experimental evidence is indirect !

Experimental evidence for collective
dynamics in Pb+Pb collision −→
azimuthal correlations between
particles−→ understood by
near-side peak on ridge-like
structures .

Evidence is indirect ! −→
anisotropic azimuthal distribution
of particles is driven by pressure
gradients within a fluid −→ needs
to rely on the direction of outgoing
particles.

CMS:1201.3158
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Modern and more direct probe of collectivity: [pT ]-fluctuation

In each heavy-ion event one can
calculate [pT ] ≡

∑
pT

Nch
, mean

transverse momentum per particle.

Fascinating feature of HI collision −→
Event-by-event fluctuation of initial
state −→ causes e-by-e fluctuations in
final state observables Nch, [pT ], Vn.

[pT ]-fluctuation −→ more direct probe
of collectivity −→ does not depend
on the direction of the particles but
solely their momenta.

ATLAS measures true dynamical
fluctuation of [pT ] (∼ 1 %) as a
function of multiplicity (Nch).

Lumpy structure of the initial density
Schenke, Tribedy, Venugopalan arXiv: 1206.6805
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ATLAS data

Variance of [pT ] for Pb+Pb @ 5.02 TeV

PhysRevC.107.054910
Table 374 in https://www.hepdata.net/record/ins2075412
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Fluctuations of mean transverse momentum per particle ([pT ])
RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

Puzzling behavior in ATLAS data : steep
decrease over a narrow range of Nch

Hydro simulation at fixed b (=0) : significant
fluctuation of Nch, modest fluctuation of [pT ]
and Strong correlation between them

The distribution can be modeled by 2D
correlated Gaussian : P(Nch, δpT )
=

∫
P(Nch, δpT |b)P(b)db

Var( [pT ]|Nch) is the squared width of
P(δpT |Nch) = P(Nch,δpT )

P(Nch) our model naturally
reproduces the steep fall in the ATLAS data
very well !

Below the knee, half of the contribution is from
impact parameter fluctuation and other half is
due to intrinsic fluctuations

The contribution of b-fluctuation gradually
disappears around the knee !

See S.Bhatta @ Mon, 12:10
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Novel probe of collectivity : [pT ] - ‘Spectra’ correlation (v0(pT ))
T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

I First introduced by Teaney et al., similar to
anisotropic flow (long range correlation, mass
ordering at low pT ).

I Advantage : does not depend on the direction
(φ) of outgoing particles

I Definition :

v0(pT ) ≡ 〈δN(pT )δpT 〉
N0(pT )σpT

and v0 ≡
σpT

〈pT 〉
,

where N(pT )− N0(pT ) = δN(pT ) and
[pT ]− 〈pT 〉 = δpT

I The scaled quantity v0(pT )/v0 is independent
of centrality (same observed for vn(pT )/vn by
ATLAS !).

I Difference : insensitive to η/s, little sensitivity
to bulk viscosity.
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Mapping the pT -cut dependence using v0(pT )
T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

v0(pT )/v0 can be used to capture
pT -acceptance effect on observables through
correction factor CA :

CA ≡
1

N0A〈pT 〉A

∫
pT ∈A

(pT−〈pT 〉A) v0(pT )
v0

N0(pT )

Then, one can relate :

v0,A = CA × v0

=⇒
σpT ,A

〈pT 〉A
= CA ×

σpT

〈pT 〉
.
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Stay tuned for more details @ QM25 by Tribhuban Parida
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Moving towards smaller system : multiplicity fluctuation in p+Pb
RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

ATLAS presents multiplicity (dNch/dη) as a
function of η and ET (centrality estimator) −→
pseudorapidity dependent correlation between
dNch/dη and ET (long-range correlation) −→
can be modeled by a correlated gamma
distribution with two parameters r ∗ σNch and
Nch

Impact parameter fluctuation plays negligible
role in central collisions (up to 10 %) −→
dominated by quantum fluctuations !
By fitting the two most centralities, we make
robust predictions on multiplicities for more
central bins.
Using different centrality classifier covering a
different rapidity window−→ direct
information on rapidity decorrelation (r).

3 2 1 0 1 2 3
0

20

40

60

80

100

120

dN
ch

d

p+Pb, sNN =5.02 TeV, pT > 00-0.01%

0-0.1%

0-1%

1-5%

5-10%

10-20%
20-30%
30-40%
40-60%

60-90%

ATLAS data
Model fit

25 50 75 100 125 150 175 200
ET   [GeV]

25

50

75

100

125

150

175

200

dN
ch

d

p+Pb, sNN =5.02 TeV

r = 0.8,  =-2.65 

dNch
d

Gaussian
Gamma (Approx.)
Gamma (Exact)

10 6

10 5

10 4

R. Samanta (IFJ, PAN) Collectivity Jan 15, 2025 9 / 11



Moving towards smaller system : multiplicity fluctuation in p+Pb
RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

ATLAS presents multiplicity (dNch/dη) as a
function of η and ET (centrality estimator) −→
pseudorapidity dependent correlation between
dNch/dη and ET (long-range correlation) −→
can be modeled by a correlated gamma
distribution with two parameters r ∗ σNch and
Nch
Impact parameter fluctuation plays negligible
role in central collisions (up to 10 %) −→
dominated by quantum fluctuations !

By fitting the two most centralities, we make
robust predictions on multiplicities for more
central bins.
Using different centrality classifier covering a
different rapidity window−→ direct
information on rapidity decorrelation (r).
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Outlook

30 years of collectivity −→ first measurement in 2001 !

Proposing new probes −→ better understanding of the QGP medium
properties and dynamics

Moving towards smaller systems :
1 [pT ]-fluctuation in p+Pb collision
2 Collectivity in O+O collision : recent surging interests, arXiv: 2103.03345,

2308.06078, 2404.08385, 2404.09780, 2407.15065 −→ probing its α-clustered structure.

Big questions that need to be answered :
1 How does flow generate in small systems ? Can we describe collectivity

in Pb+Pb, p+Pb and p+p system in a consistent way ? Is QGP
formed in all of these systems ? Christiansen and Mechelen, arXiv:2412.02672, ALICE

Collaboration, arXiv:2411.09323 (see S. Tripathy @ Tue, 11:10)
2 Can we apply hydrodynamics in those systems ? . . .

Thank you !
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Backup
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Impact parameter (b) is important !

In experiment b is not known
! =⇒ [pT ] fluctuation is
measured for fixed Nch

Fixed Nch =⇒ finite range
of b !

Variation of b gives a
contribution to the variation
of [pT ] =⇒ goes to 0 in
ultracentral collisions !

b V b V
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Bayesian reconstruction of P(b |Nch)

First we solve the inverse
problem:
what is the distribution of Nch at
fixed b i.e. P(Nch|b) ?

Then we apply Bayes’ theorem to
find P(b |Nch):
P(b |Nch) P(Nch)=P(Nch|b) P(b)

We assume P(Nch|b) to be
Gaussian !

Fit P(Nch) as sum of Gaussians

We precisely reconstruct the knee
(mean Nch at b=0)

The steep fall of the variance
precisely occur at the knee !
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Das, Giacalone, Monard, Ollitrault
arXiv:1708.00081
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Bayesian reconstruction of P(b |Nch)
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b-dependence of the fit parameters

We assume mean [pT ] to be independent of b

We assume Var([pT ]) is a smooth function of mean multiplicity :

σpT
2( 〈Nch(0)〉
〈Nch(b)〉)

We also assume r to be independent of b for simplicity
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P(b |Nch) from Bayesian reconstruction

At smaller Nch the distribution
P(b|Nch) is a full Gaussian

But as we move closer and closer
to the knee, P(b|Nch) becomes
truncated due to the limit b ≥ 0

Above the knee it gets extremely
truncated =⇒ the impact
parameter fluctuation gradually
disappears !
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ET -dependent [pT ]-fluctuation
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Impact parameter fluctuation is small !
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P(δpT |Nch, cb) in terms of k1 and k2
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Moments and cumulants of [pt ]-fluctuation
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Further predictions : Mean, Skewness and kurtosis
RS, Picchetti, Luzum, Ollitrault Phys.Rev.C 108 (2023) 2, 024908
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Slight increase of mean [pT ]
in ultracentral collision

Gardim, Giacalone, Ollitrault, arXiv:1909.11609

Large skewness
below the knee

Large kurtosis
at the knee
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Application : Extraction of speed of
sound in QGP from mean [pT ]
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CMS Result on mean [pT ] !
Rept.Prog.Phys. 87 (2024) 7, 077801
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https://iopscience.iop.org/article/10.1088/1361-6633/ad4b9b


How precise is the measurement ?
Rept.Prog.Phys. 87 (2024) 7, 077801

Speed of sound in QGP is predicted and measured with great precision !!
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