Probing the hottest droplet of fluid through collectivity

Rupam Samanta

Institute of Nuclear Physics, Polish Academy of Science and AGH University of Krakow, Poland

10th Asian Triangle Heavy-Ion Conference, Gopalpur, India

High energy heavy-ion(HI) collision: "The Little Bang"

Shen, Heinz, arXiv:1507.01558

Boiling water : 10^2 K

Core of the Sun : 10^7 K

 $\begin{array}{c} \textbf{QGP} \sim \textbf{212} \ \textbf{MeV} \equiv \textbf{10}^{12} \ \textbf{K} \ \textbf{!!} \\ \textbf{Gardim et al. Nature Physics 16, 615-619} \\ \hline \end{array}$

R. Samanta (IFJ, PAN)

Collectivity

Jan 15, 2025 2 / 11

Modeling momentum anisotropy as fourier expansion

$$\begin{split} \frac{d\mathsf{N}}{dp_{\mathsf{T}}d\phi} \propto 1 + 2 \mathbf{v_2} \cos\left[2(\phi - \Psi_2)\right] + 3 \mathbf{v_3} \cos\left[3(\phi - \Psi_3)\right] + \dots \\ \text{elliptic flow} \qquad \text{triangular flow} \end{split}$$

R. Samanta (IFJ, PAN)

Collectivity

Experimental evidence is indirect !

 Experimental evidence for collective dynamics in Pb+Pb collision → azimuthal correlations between particles → understood by near-side peak on ridge-like structures .

Experimental evidence is indirect !

- Experimental evidence for collective dynamics in Pb+Pb collision → azimuthal correlations between particles → understood by near-side peak on ridge-like structures .
- Evidence is indirect ! → anisotropic azimuthal distribution of particles is driven by pressure gradients within a fluid → needs to rely on the direction of outgoing particles.

• In each heavy-ion event one can calculate $[p_T] \equiv \frac{\sum p_T}{N_{ch}}$, mean transverse momentum per particle.

Lumpy structure of the initial density Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Schenke, Tribedy, Venugopaian arXiv: 1200.08

- In each heavy-ion event one can calculate $[p_T] \equiv \frac{\sum p_T}{N_{ch}}$, mean transverse momentum per particle.
- Fascinating feature of HI collision \longrightarrow Event-by-event fluctuation of initial state \longrightarrow causes e-by-e fluctuations in final state observables N_{ch} , $[p_T]$, V_n .

Lumpy structure of the initial density Schenke, Tribedy, Venugopalan arXiv: 1206.6805

Collectivity

- In each heavy-ion event one can calculate $[p_T] \equiv \frac{\sum p_T}{N_{ch}}$, mean transverse momentum per particle.
- Fascinating feature of HI collision → Event-by-event fluctuation of initial state → causes e-by-e fluctuations in final state observables N_{ch}, [p_T], V_n.
- $[p_T]$ -fluctuation \longrightarrow more direct probe of collectivity \longrightarrow does not depend on the direction of the particles but solely their momenta.

- In each heavy-ion event one can calculate $[p_T] \equiv \frac{\sum p_T}{N_{ch}}$, mean transverse momentum per particle.
- Fascinating feature of HI collision → Event-by-event fluctuation of initial state → causes e-by-e fluctuations in final state observables N_{ch}, [p_T], V_n.
- $[p_T]$ -fluctuation \longrightarrow more direct probe of collectivity \longrightarrow does not depend on the direction of the particles but solely their momenta.
- ATLAS measures true dynamical fluctuation of $[p_T]$ (~ 1 %) as a function of multiplicity (N_{ch}).

R. Samanta (IFJ, PAN)

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

 Puzzling behavior in ATLAS data : steep decrease over a narrow range of N_{ch}

See S.Bhatta @ Mon, 12:10 ATLAS data 250 [MeV²/C²] 120 Var (p₁) 0 001 50 0+ 1500 2000 2500 3000 3500 4000 Nch Variance of $[p_T]$ for Pb+Pb @ 5.02 TeV PhysRevC.107.054910 Table 374 in https://www.hepdata.net/record/ins20

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

Collectivity

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of N_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them

See S.Bhatta @ Mon, 12:10

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5, L051902

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5 LOE 100

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !

Jan 15, 2025

6/11

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5-105100

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch}, modest fluctuation of [p_T] and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !
- Below the knee, half of the contribution is from impact parameter fluctuation and other half is due to intrinsic fluctuations

Jan 15, 2025

6/11

RS, Bhatta, Jia, Luzum, Ollitrault Phys.Rev.C 109 (2024) 5-1051002

- Puzzling behavior in ATLAS data : steep decrease over a narrow range of *N*_{ch}
- Hydro simulation at fixed b (=0) : significant fluctuation of N_{ch} , modest fluctuation of $[p_T]$ and Strong correlation between them
- The distribution can be modeled by 2D correlated Gaussian : $P(N_{ch}, \delta p_T)$ = $\int P(N_{ch}, \delta p_T | b) P(b) db$
- Var($[p_T]|N_{ch}$) is the squared width of $P(\delta p_T|N_{ch}) = \frac{P(N_{ch},\delta p_T)}{P(N_{ch})}$ our model naturally reproduces the steep fall in the ATLAS data very well !
- Below the knee, half of the contribution is from impact parameter fluctuation and other half is due to intrinsic fluctuations
- The contribution of b-fluctuation graduallydisappears around the knee !

R. Samanta (IFJ, PAN)

Jan 15, 2025 6 / 11

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).

R. Samanta (IFJ, PAN)

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

Collectivity

- ► First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : does not depend on the direction (φ) of outgoing particles

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

where
$$N(p_T) - N_0(p_T) = \delta N(p_T)$$
 and $[p_T] - \langle p_T \rangle = \delta p_T$

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- ► First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

- where $N(p_T) N_0(p_T) = \delta N(p_T)$ and $[p_T] \langle p_T \rangle = \delta p_T$
- The scaled quantity $v_0(p_T)/v_0$ is independent of centrality (same observed for $v_n(p_T)/v_n$ by ATLAS !).

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

- First introduced by Teaney et al., similar to anisotropic flow (long range correlation, mass ordering at low p_T).
- Advantage : does not depend on the direction (φ) of outgoing particles

Definition :

$$v_0(p_T) \equiv \frac{\langle \delta N(p_T) \delta p_T \rangle}{N_0(p_T) \sigma_{p_T}} \text{ and } v_0 \equiv \frac{\sigma_{p_T}}{\langle p_T \rangle},$$

- where $N(p_T) N_0(p_T) = \delta N(p_T)$ and $[p_T] \langle p_T \rangle = \delta p_T$
- The scaled quantity $v_0(p_T)/v_0$ is independent of centrality (same observed for $v_n(p_T)/v_n$ by ATLAS !).
- Difference : insensitive to η/s , little sensitivity to bulk viscosity.

Collectivity

Mapping the p_T -cut dependence using $v_0(p_T)$

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

Mapping the p_T -cut dependence using $v_0(p_T)$

T. Parida, RS, J-Y. Ollitrault Phys.Lett.B 857 (2024) 138985

Stay tuned for more details @ QM25 by Tribhuban Parida

R. Samanta (IFJ, PAN)

< □ > < 同 > < 回 > < 回 > < 回 >

Moving towards smaller system : multiplicity fluctuation in p+Pb

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

- ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and E_T (long-range correlation) \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$
- Impact parameter fluctuation plays negligible role in central collisions (up to 10 %) → dominated by quantum fluctuations !
- By fitting the two most centralities, we make robust predictions on multiplicities for more central bins.

Jan 15, 2025

9/11

Moving towards smaller system : multiplicity fluctuation in p+Pb

RS, J-Y. Ollitrault Phys.Lett.B 855 (2024) 138834

- ATLAS presents multiplicity $(dN_{ch}/d\eta)$ as a function of η and E_T (centrality estimator) \longrightarrow pseudorapidity dependent correlation between $dN_{ch}/d\eta$ and E_T (long-range correlation) \longrightarrow can be modeled by a correlated gamma distribution with two parameters $r * \sigma_{N_{ch}}$ and $\overline{N_{ch}}$
- Impact parameter fluctuation plays negligible role in central collisions (up to 10 %) → dominated by quantum fluctuations !
- By fitting the two most centralities, we make robust predictions on multiplicities for more central bins.
- Using different centrality classifier covering a different rapidity window → direct information on rapidity decorrelation (r).

Outlook

- 30 years of collectivity \longrightarrow first measurement in 2001 !
- \bullet Proposing new probes \longrightarrow better understanding of the QGP medium properties and dynamics
- Moving towards smaller systems :
 - [*p_T*]-fluctuation in p+Pb collision
 Collectivity in O+O collision : recent surging interests, arXiv: 2103.03345, 2308.06078, 2404.08385, 2404.09780, 2407.15065 → probing its α-clustered structure.
- Big questions that need to be answered :
 - How does flow generate in small systems ? Can we describe collectivity in Pb+Pb, p+Pb and p+p system in a consistent way ? Is QGP formed in all of these systems ? Christiansen and Mechelen, arXiv:2412.02672, ALICE Collaboration, arXiv:2411.09323 (see S. Tripathy @ Tue, 11:10)
 - ② Can we apply hydrodynamics in those systems ? ...

Thank you !

Backup

イロト 不聞 トイヨト イヨト

Impact parameter (b) is important !

 In experiment b is not known
 ! ⇒ [p_T] fluctuation is measured for fixed N_{ch}

Impact parameter (b) is important !

- In experiment b is not known
 ! ⇒ [p_T] fluctuation is measured for fixed N_{ch}
- Fixed N_{ch} ⇒ finite range of b !

Impact parameter (b) is important !

- In experiment b is not known
 ! ⇒ [p_T] fluctuation is measured for fixed N_{ch}
- Fixed N_{ch} ⇒ finite range of b !
- Variation of b gives a contribution to the variation of [p_T] ⇒ goes to 0 in ultracentral collisions !

4000

ATLAS data

R. Samanta (IFJ, PAN)

2500

3000

Nch

3500

ATLAS data

4000

- First we solve the inverse problem: what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b) ?
- Then we apply Bayes' theorem to find P(b |N_{ch}): P(b |N_{ch}) P(N_{ch})=P(N_{ch}|b) P(b)
- We assume P(*N_{ch}*|b) to be Gaussian !

N_{ch} distribution at fixed b Gaussian assupmtion !

- First we solve the inverse problem: what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b) ?
- Then we apply Bayes' theorem to find P(b |N_{ch}): P(b |N_{ch}) P(N_{ch})=P(N_{ch}|b) P(b)
- We assume P(*N_{ch}*|b) to be Gaussian !
- Fit P(N_{ch}) as sum of Gaussians

Sum of Gaussians at fixed b

Das, Giacalone, Monard, Ollitrault arXiv:1708.00081

- First we solve the inverse problem: what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b) ?
- Then we apply Bayes' theorem to find P(b |N_{ch}): P(b |N_{ch}) P(N_{ch})=P(N_{ch}|b) P(b)
- We assume P(*N_{ch}*|b) to be Gaussian !
- Fit P(N_{ch}) as sum of Gaussians
- We precisely reconstruct the knee (mean N_{ch} at b=0)

- First we solve the inverse problem: what is the distribution of N_{ch} at fixed b i.e. P(N_{ch}|b) ?
 Then we apply Bayes' theorem to find P(b |N_{ch}): P(b |N_{ch}) P(N_{ch})=P(N_{ch}|b) P(b)
- We assume P(*N_{ch}*|b) to be Gaussian !
- Fit P(N_{ch}) as sum of Gaussians
- We precisely reconstruct the knee (mean N_{ch} at b=0)
- The steep fall of the variance precisely occur at the knee !

R. Samanta (IFJ, PAN)

- We assume mean $[p_T]$ to be independent of b
- We assume $Var([p_T])$ is a smooth function of mean multiplicity :

 $\sigma p_T^2 (\frac{\langle N_{ch}(0) \rangle}{\langle N_{ch}(b) \rangle})$

• We also assume **r** to be independent of **b** for simplicity

- At smaller N_{ch} the distribution $P(b|N_{ch})$ is a full Gaussian
- But as we move closer and closer to the knee, P(b|N_{ch}) becomes truncated due to the limit b ≥ 0
- Above the knee it gets extremely truncated =>> the impact parameter fluctuation gradually disappears !

E_T -dependent $[p_T]$ -fluctuation

Impact parameter fluctuation is small !

R. Samanta (IFJ, PAN)

 $P(\delta p_T | N_{ch}, c_b)$ in terms of k1 and k2

$$P(\delta p_t | N_{ch}, c_b) = \frac{1}{\sqrt{2\pi\kappa_2(c_b)}} \exp\left(-\frac{(\delta p_t - \kappa_1(c_b))^2}{2\kappa_2(c_b)}\right)$$

$$\kappa_1(c_b) = r \frac{\sigma_{p_t}(c_b)}{\sigma_{N_{ch}}(c_b)} (N_{ch} - \overline{N_{ch}}(c_b)),$$

$$\kappa_2(c_b) = (1 - r^2) \sigma_{p_t}^2(c_b).$$

R. Samanta (IFJ, PAN)

:▶ ব≣ ▶ ≣ পিও Jan 15, 2025 10/1

イロト イヨト イヨト イヨト

Moments and cumulants of $[p_t]$ -fluctuation

$$\begin{split} \langle \delta p_t | c_b \rangle &= \kappa_1, \\ \langle \delta p_t^2 | c_b \rangle &= \kappa_1^2 + \kappa_2, \\ \langle \delta p_t^3 | c_b \rangle &= \kappa_1^3 + 3\kappa_2\kappa_1, \\ \langle \delta p_t^4 | c_b \rangle &= \kappa_1^4 + 6\kappa_2\kappa_1^2 + 3\kappa_2^2, \end{split}$$

$$\langle \delta p_l \rangle = \langle \kappa_1 \rangle, \operatorname{Var}(p_l) = (\langle \kappa_1^2 \rangle - \langle \kappa_1 \rangle^2) + \langle \kappa_2 \rangle, \operatorname{Skew}(p_l) = \langle \kappa_1^3 \rangle - 3 \langle \kappa_1^2 \rangle \langle \kappa_1 \rangle + 2 \langle \kappa_1 \rangle^3 + 3 (\langle \kappa_2 \kappa_1 \rangle - \langle \kappa_2 \rangle \langle \kappa_1 \rangle), \operatorname{Kurt}(p_l) = \langle \kappa_1^4 \rangle - 4 \langle \kappa_1^3 \rangle \langle \kappa_1 \rangle + 6 \langle \kappa_1^2 \rangle \langle \kappa_1 \rangle^2 - 3 \langle \kappa_1 \rangle^4 + 6 (\langle \kappa_2 \kappa_1^2 \rangle - \langle \kappa_2 \rangle \langle \kappa_1^2 \rangle - 2 \langle \kappa_2 \kappa_1 \rangle \langle \kappa_1 \rangle + 2 \langle \kappa_2 \rangle \langle \kappa_1 \rangle^2) + 3 (\langle \kappa_2^2 \rangle - \langle \kappa_2 \rangle^2),$$

• • • • • • • • • • • •

Further predictions : Mean, Skewness and kurtosis

RS, Picchetti, Luzum, Ollitrault Phys.Rev.C 108 (2023) 2, 024908

Application : Extraction of speed of sound in QGP from mean $[p_T]$

CMS Result on mean $[p_T]$!

Rept.Prog.Phys. 87 (2024) 7, 077801

Significant increase of $\langle p_{\rm T} \rangle$ toward UCC events as predicted by the simulations

Speed of sound extracted from the fit and $T_{\rm eff}$ from $\langle p_{\rm T} \rangle^0$

How precise is the measurement ?

Rept.Prog.Phys. 87 (2024) 7, 077801

Speed of sound in QGP is predicted and measured with great precision !!

R. Samanta	(IFJ, PA	١N
------------	----------	----