A directed flow for validating the Λ potential from chiral EFT: Bridging heavy-ion collisions, hypernuclei, and neutron stars

Asanosuke Jinno (Kyoto Univ.)

in collaboration with Koichi Murase (Tokyo Metropolitan Univ.)

Yasushi Nara (Akita International Univ.)

- Introduction: Nuclear matter EOS and the Λ potential
- Λ directed flow to validate the Λ potential

Y. Nara, <u>A. Jinno</u>, K. Murase, & A. Ohnishi, PRC 106, 044902(2022).
 <u>A. Jinno</u>, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).
 ATHIC2025, Gopalpur, India, Jan. 13-16, 2025

Nuclear matter EOS: An ultimate goal

Nuclear matter Equation of state, EOS:

Pressure as a function of the energy density, temperature, etc.

EOS of dense nuclear matter plays an important role in various physics!

Unified approach for EOS

A <u>unified approach</u> provides <u>a strong constraint on EOS</u>, $P = P(\epsilon)$.

e.g. S. Huth et al., Nature 606 (2022) 276.; N. Rutherford et al., Astrophys. J. Lett. 971 (2024)

Low density region ($ho < 2
ho_0$)

Number density n (n_{sat})

High density region ($\rho > 2\rho_0$)

Hyperon composition is important!

Such an approach does <u>not</u> tell us the <u>detailed properties</u> of EOS.

Appearance of hyperons in nuclear matter significantly changes the EOS!

cf. Hyperon puzzle of neutron stars, Demorest et al. Nature (2010).

The Λ single-particle potential U_{Λ}

- The <u> Λ potential</u> is important whether Λ can appear in neutron stars.
- Recently, YN + YNN forces from chiral EFT are used to calculate U_Λ!
 Kohno(2018), D. Gerstung, N. Kaiser, and W. Weise (2020)

Our study on the Λ hypernuclei

AJ, K. Murase, Y. Nara, & A. Ohnishi, PRC 108, 065803 (2023).

We have verified that the Λ potential repulsive at high densities is <u>consistent with the Λ hypernuclear spectroscopy</u>.

At the same time, more attractive Λ potentials (conventional Skyrme-HF

model) at high densities are <u>also consistent</u> with the data.

We need other strategy to distinguish the repulsive and attractive Λ potentials.

Purpose of our study

Check the consistency of the repulsive Λ potential with the heavy-ion collision observable (Λ directed flow v_1).

Λ directed flow to validate the Λ potential

8

Directed flow v_1 ($\sqrt{s_{NN}} \approx 3-5$ GeV)

- The anisotropic collective flow v_n = (cosnφ) has been extensively investigated to extract the properties of dense matter equation of state (EOS).
 (Recent review: A. Sorensen, Prog. Part. Nucl. Phys. 134 (2024) 104080)
- Directed flow: $v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle$ as a function of rapidity $y = \tanh^{-1} \left(\frac{p_z}{E} \right)$ $(p_T^2 = p_x^2 + p_y^2)$

 v_1 has a non-trivial dependence on EOS.

Proton directed flow v_1

• Proton directed flow slope dv_1/dy shows sign change at $\sqrt{s_{NN}} = 11.5$ GeV. STAR Collaboration, Phys. Rev. Lett. 112 (2014) 162301.

Signal of the 1st order phase transition?

• In 2022, it is shown $\sqrt{s_{NN}}$ dependence of proton v1 can be <u>explained without phase transition</u> by the relativistic quantum molecular dynamics model with the Lorentzvector potential (RQMDv) implemented in JAM2. Nara and Ohnishi (2022) Let's discuss $\wedge v_1!$ <u>https://gitlab.com/transportmodel/jam2</u>

10

Employed A potentials

Using Λ potentials reproducing the Λ hypernuclear data

Since the momentum dependence has uncertainty in large k (fm⁻¹), we compare two types of the momentum dependence.

A directed flow v_1 ($\sqrt{s_{NN}} = 4.5$ GeV)

Y. Nara, A. Jinno, K. Murase, & A. Ohnishi, PRC 106, 044902(2022). (Calculation is done by using latest version of JAM2)

STAR A: Phys. Rev. C 103, 034908 (2021).

Why?

Repulsion is enhanced by mom. dep.

The **<u>density dependence</u>** gets <u>more repulsion</u> with the harder momentum dependence.

v_1 with and without momentum dependence

Y. Nara, A. Jinno, K. Murase, & A. Ohnishi, PRC 106, 044902(2022).

In the expansion stage, v_1 of Λ is much suppressed with momentum dependence.

The momentum dependence enhances the repulsion.

[Ad] Ongoing works to be given in QM2025

- Improving the formalism of RQMD simulation with a better approximation. Y. Nara, AJ, and K. Murase, in preparation. (Poster in QM 2025)
- Implementing the Σ potential consistently calculated as the Λ potential. AJ, J. Haidenbauer, K. Murase, Y. Nara, on working (Oral talk in QM 2025)

Matter

calculation

(Note) v_1 of Λ is here calculated as v_1 of $\Sigma 0 + \Lambda$. cf. $\Sigma^0 \rightarrow \Lambda + \gamma$

Chiral EFT YN 2BF + YNN 3BF (Brückner-HF)

Summary

We have examined the scenario which hyperon does not appear in neutron stars using the Λ directed flow v_1 created in the heavy-ion collision.

- The chiral EFT model is consistent with the experimental data!
- Λv_1 is not so sensitive to the density dependence of the Λ potential but is <u>sensitive to the momentum dependence</u>.
- With the momentum dependence, the repulsion felt by Λ is enhanced.
- The Λ optical potential from e.g. Λ -A scattering may be useful to constrain it.

Ongoing work

- Constructing the Σ potential based on chiral EFT
- Implementing the Λ and Σ potentials consistently in the event generator JAM2