Open Quantum System (OQS) approaches for quarkonium evolution in the QGP

Rishi Sharma, TIFR

January 15, 2025

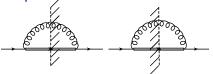
Quarkonia: energy scales

- Non-relativistic bound states with $M \gg \frac{1}{r} \gg E_b$. In the thermal medium, $T \sim E_b$ (few 100MeV for Bottomonia)
- pNRQCD [Brambrilla, Pineada, Soto, Vairo (1999)] is a non-relativistic EFT of quarkonia
- The lagrangian is

$$\begin{split} L_{\rm pNRQCD} &= \int d^3 \mathbf{r} \, \mathrm{tr} \Big(\mathcal{S}(\mathbf{r})^{\dagger} [i\partial_0 - h_s] \mathcal{S}(\mathbf{r}) \\ &+ \mathcal{O}(\mathbf{r})^{\dagger} [iD_0 - h_o] \mathcal{O}(\mathbf{r}) \Big) \\ &+ \mathcal{O}^{\dagger}(\mathbf{r}) \mathbf{r} \cdot g \mathbf{E} \mathcal{S}(\mathbf{r}) + \frac{1}{4} \{ \mathcal{O}^{\dagger}(\mathbf{r}) \{ \mathbf{r} \cdot g \mathbf{E}, \mathcal{O}(\mathbf{r}) \} \} + \ldots \Big) \end{split}$$

- ► r is the relative separation between QQ, S is the singlet wavefunction and O is the octet wavefunction
- ► E is the chromo-electric field and h_{o,s} = -^{∇²}/_M + v_{o,s}(r), (See talk by Dibyendu Bala for a non-perturbative calculation of v_{o,s}.)

The decay-rate of quarkonia



- S → O via scattering or absorption of thermal gluons [Brambilla, Ghiglieri, Vairo, Petreczky (2008)]
- Incorporates well known processes like screening [Matsui, Satz (1986)], time-like gluon absorption or Gluo-dissociation (GD) [Bhanot, Peskin (1979)], space-like gluon scattering or Landau Damping (LD) [Laine, Philipsen, Tassler, Romatschke (2007), Granchamp,Rapp (2001)]
- The decay rate of a state ψ is given by

$$\Gamma = \frac{g^2}{3N_c} \sum_{f} |\langle f | \mathbf{r} | \psi \rangle|^2 f(k^0) \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \rho_{\mathsf{EE}}(k^0, \mathbf{k})|_{k^0 = E_f - E_{\psi}}$$

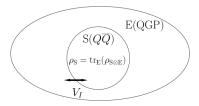
The chromoelectric spectral function ρ_{EE} can be computed on the lattice (See talks by Dibyendu Bala, Saumen Datta.) Quarkonium: a quantum system (S) in an environment (E)

- ► The $Q\bar{Q}$ pair is in a mixed state described by a density matrix obtained by tracing out the E: $\rho_{\rm S} = {\rm tr}_{\rm E}(\rho_{\rm tot})$
- ▶ The $\overline{Q}Q$ system (S) and the QGP environment (E) interact with each other. Their combined evolution is unitary

$$i rac{d
ho_{ ext{tot}}}{dt} = [H_{ ext{tot}},
ho_{ ext{tot}}]$$

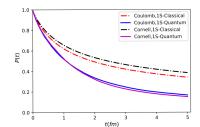
$$\blacktriangleright H_{\rm tot} = H_{\rm S} + H_{\rm E} + V_{\rm I}$$

• Tracing the environment gives $\rho_{\rm S}$. OQS framework tracks $\rho_{\rm S}$



Quantum mechanical evolution

- If Γ ≪ E_b then the quantum mechanical evolution is described by phase rotation between narrow states on time scales ~ 1/E_b and transitions between them on scales 1/Γ: Quantum Optical regime [Borghini, Gombeaud (2011, 2011)]
- Further, on a time scale t ≫ 1/E_b, quantum effects are washed out and a semi-classical Boltzmann equation can be written [Yao, Mehen (2018); Yao, Müller (2018); Yao, Ke, Xu, Bass, Müller (2021)]
- For Υ(2/3S), Γ ~ E_b. Furthermore, the medium evolves on comparable timescales ~ 1/T. Hence, OQS [Kajimoto et. al. (2017); Tiwari, Sharma (2019)]



System Hamiltonian

$$\begin{split} H_{\rm S} &= \Big(\frac{p^2}{M} + v_s(\mathbf{r})\Big)|s\rangle\langle s| + \Big(\frac{p^2}{M} + v_o(\mathbf{r})\Big)|o_a\rangle\langle o_a|\\ V_{\rm I} &= -g\mathbf{r}\cdot\mathbf{E}^a\Big(\frac{1}{\sqrt{2N_c}}|s\rangle\langle o_a| + \frac{1}{\sqrt{2N_c}}|o_a\rangle\langle s| + \frac{1}{2}d_{abc}|o_b\rangle\langle o_c|\Big) \end{split}$$

Justified if $M \gg 1/r \gg E_b$, T

$$\blacktriangleright \ \rho_{s}(t) = \langle s | \rho_{\rm S} | s \rangle, \ \rho_{o}(t) = \langle o_{a} | \rho_{\rm S} | o_{a} \rangle$$

- $\rho_{\rm S}$ is diagonal in *s*, *o* basis $\rho_{\rm S} = \text{diag}\{\rho_s, \rho_o\}$. Similarly, $H_{\rm S} = \text{diag}\{h_s, h_o\}$.
- Interaction between the system and the interaction comes from V_I

The master equation

• A master equation (in the interaction picture) up to $\mathcal{O}(V_{\rm I}^3)$

$$rac{d
ho_{
m S}}{dt}pprox -\int_{0}^{t}du\left[V_{
m I}(t),\left[V_{
m I}(u),
ho_{
m S}(t)
ight]
ight]$$

[Breuer, Petruccione; Brambilla et. al. (2017)]

 Tracing over the environment gives the master equation in Schrödinger picture

$$i\frac{d\rho_{\rm S}}{dt} = [H_{\rm S}, \rho_{\rm S}] - i\int_0^t du \,\mathcal{C}(u) \sum_{i=1,3}^{n=\pm,d} \left\{ V_{ni}^{\dagger}(0)V_{ni}(u)\rho_{\rm S}(t) - V_{ni}(u)\rho_{\rm S}(t)V_{ni}^{\dagger}(0) + \mathrm{HC} \right\}$$
$$\mathcal{C}(t) = \frac{g^2}{3N_c} \mathrm{tr}_{\rm E} \left\{ \mathsf{E}_i^a(t,0)U(t,0)_{ab}\mathsf{E}_i^b(0,0)\rho_{\rm E} \right\} \rangle$$

The jump operators

▶ { $V_{ni}(t)$ } are time dependent operators corresponding to $s \rightarrow o, o \rightarrow s, o \rightarrow o$ transitions

Explicitly,

$$V_{+i}(t) = e^{ih_s t} \mathbf{r}_i e^{-ih_o t} \sqrt{C_F} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$V_{-i}(t) = e^{ih_o t} \mathbf{r}_i e^{-ih_s t} \sqrt{\frac{1}{2N_c}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$V_{di}(t) = e^{ih_o t} \mathbf{r}_i e^{-ih_o t} \sqrt{\frac{N_c^2 - 4}{4N_c}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

٠

Expansion in $au_{ m E}/ au_{ m S}$ (LO, NLO expansion)

- $V_{ni}(t)$ evolves on a time scale of $au_{
 m E} \sim rac{1}{E_b}$
- ▶ Γ(t) is substantial only for $t < \tau_{\rm E} \sim \frac{1}{T}$. For example, in weak coupling, $\tau_{\rm E} \sim \frac{1}{gT}$
- \blacktriangleright The relaxation time (inverse of the thermal width) $au_R \sim 1/\Gamma$
- If τ_R, τ_S ≫ τ_E then the correlations in the environment are lost rapidly on the system time scales, and hence the evolution equation of ρ_S(t) does not depend on the history of the evolution: memoryless evolution

$$\blacktriangleright$$
 If $au_{
m E} \ll au_{
m S}$ then

$$V_{ni}(t) \sim e^{ih_{\alpha}t}\mathbf{r}_{i}e^{-ih_{\beta}t} \approx \mathbf{r}_{i} + it(h_{\alpha}\mathbf{r}_{i} - \mathbf{r}_{i}h_{\beta}) + \mathcal{O}\Big[\Big(rac{ au_{\mathrm{E}}}{ au_{\mathrm{S}}}\Big)^{2}\Big]$$

LO NLO

 Both LO and NLO can be written in a Lindblad form (memoryless)

▶ In the memoryless approximation, only $\tilde{C}(\omega = 0) = \frac{1}{2}(\kappa + i\gamma)$ is required

The Lindblad equation

General Markovian evolution has the form

$$\frac{d\rho(t)}{dt} = \frac{1}{i}[H,\rho(t)] + \sum_{n} L_n \rho(t) L_n^{\dagger} - \frac{1}{2} \{L_n^{\dagger} L_n,\rho(t)\}$$

- $[H, \rho]$ gives unitary evolution. The "jump operators", L_n give non time-reversible transitions between states
- Ensures tr(ρ(t)) = 1 during evolution. Ensures that the eigenvalues of ρ(t) are positive

The L_n to leading order (LO) in τ_E/τ_S

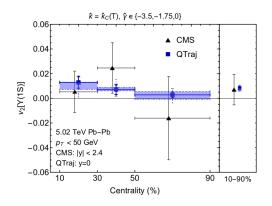
LO jump operators, Brambilla, Escobedo, Soto, Vairo (2016, 2017)

$$L^{0} = \mathbf{r} \sqrt{\frac{\kappa}{N_{c}^{2} - 1}} \begin{pmatrix} 0 & 1\\ \sqrt{N_{c}^{2} - 1} & 0 \end{pmatrix}, \ L^{1} = \mathbf{r} \sqrt{\frac{(N_{c}^{2} - 4)\kappa}{2(N_{c}^{2} - 1)}} \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}$$

- Open source solver for Lindblad equations for quarkonium (QTRAJ) - Omar, Escobedo, Islam, Strickland, Thapar, Vander, Griend, Weber (2021)
- Phenomenology (R_{AA} and v₂) Brambilla, Escobedo, Strickland, Vairo, Griend, Weber (2021, 2021)

LO phenomenology (v_2)

- Brambilla, Escobedo, Strickland, Vairo, Griend, Weber (2021)
- κ̂ = κ/T³, γ̂ = γ/T³, can be treated as fit parameters. Aternatively, can constrain them from lattice measurements of the mass shift and spectral function width computed on the lattice (Talk by Dibyendu Bala)

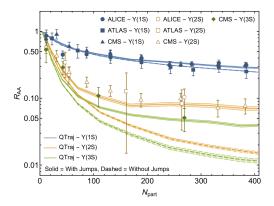


NLO formalism

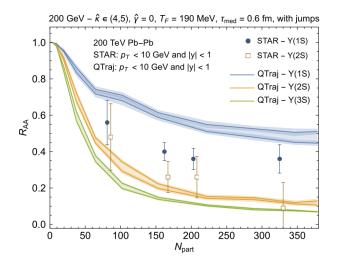
- ► Lindblad equations have been derived to next to leading order (NLO) in τ_S / τ_E
- Formalism and phenomenology
 - Derived and solved Boltzmann equations using the formalism -Yao (2021)
 - LO and NL0 equations in perturbative QCD Akamatsu (2017, 2020)
 - NLO equations using pNRQCD derived and solved Brambilla, Escobedo, Islam, Strickland, Tiwari, Vairo, Griend (2022, 2023)

NLO phenomenology (R_{AA})

- NLO equations using pNRQCD derived and solved Brambilla, Escobedo, Islam, Strickland, Tiwari, Vairo, Griend (2022, 2023)
- Transitions associated with L_n essential in explaining $\Upsilon(2S)$, $\Upsilon(3S)$



Comparison with STAR results



[Strickland, Thapa (2023), STAR (2023)]

Comparison with STAR results

- RHIC suppression larger than expected from models that fit LHC
- Regeneration not important for $\Upsilon(1S)$ [Du, He, Rapp (2017)]
- Possibly larger nuclear matter effects at RHIC compared to LHC?
- Finite frequency effects?

Expansion in $\tau_{\rm E}/\tau_{\rm S}$?

- ► However, $E_b \sim 500$ MeV for $\Upsilon(1S)$, a little smaller for $\Upsilon(2S)$. On the other hand $T \leq 500$ MeV
- For Υ(1S) in particular, it is worthwhile investigating whether further corrections in τ_E/τ_S can have an effect on quantum dynamics
- Finite frequency affects the decay rates, [Sharma, Singh (2023)]. Therefore, worth investigating whether finite frequency effects modify the quantum evolution. (See talk by Vyshakh BR.)

OQS framework for charmonia

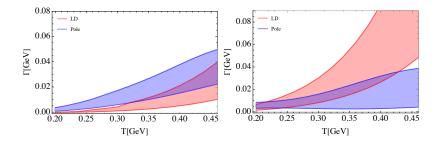
- ▶ The first challenge is that because $1/r \gtrsim T$ but not much larger, and pNRQCD is less controlled
- NRQCD formalism better suited (avoid making the multipole expansion) [Blaizot, Escobedo (2018); Delorme, Katz, Gousset, Gossiaux, Blaizot (2024)]. Factorization is not apparent
- Second, regeneration from uncorrelated charms plays an important role, especially at LHC
- Expensive and challenging problem

Summary

- ► For bottomonium, pNRQCD leads to the factorization of the non-perturbative quantity, (EE) from the dynamics of the QQ
- ▶ In the hierarchy $\frac{\tau_{\rm E}}{\tau_{\rm S}} \ll 1$, Lindblad equations can be derived, and give a good description of LHC data but miss at RHIC
- ▶ Forgoing the expansion in $\frac{\tau_{\rm E}}{\tau_{\rm S}}$ leads to a master equation with memory, and this affects quantum evolution

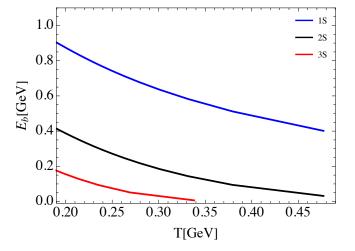
Backup slides

Decay widths



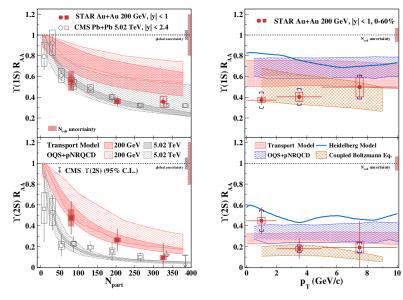
Decay width with T [Sharma, Singh (2023)]

Binding energies



Binding energy of the states with T [Sharma, Singh (2023)]

STAR results for Υ



LO phenomenology (v_2)

Brambilla, Escobedo, Strickland, Vairo, Griend, Weber (2021)

