

Study of charm fragmentation using charm-hadron angular correlation measurements with ALICE

Ravindra Singh on behalf of the ALICE Collaboration

2025

Istituto Nazionale di Fisica Nucleare Sezione di Padova

10th Asian Triangle Heavy-Ion Conference (ATHIC 2025) 13-16 Jan 2025

Heavy-flavour (HF) correlations

- Heavy quarks are produced in hard scattering process with high Q^2
 - Radiate gluons, generating a parton shower and hadronize \rightarrow heavy-quark (HQ) jet
- Angular correlations of heavy-flavour hadrons with charged particles allow to study HF parton shower.
 - Description of peak shapes and width, connected to HQ hadronisation process
- Give access to the production mechanisms:
 - LO and NLO processes

What do we learn by investigating different systems?

- pp collisions
 - Test for pQCD calculations, study of heavy-flavour hadronisation, baseline for heavy-ion collisions.
- p-Pb Collisions
 - Modification due to Cold Nuclear Matter (CNM) effects, gluon saturation effect¹
- Pb-Pb collisions
 - Modification due to the interaction with the Quark Gluon Plasma (QGP), such as energy loss mechanisms¹

[1] <u>Universe 10 (2024) 3, 109</u>

Heavy-flavour (HF) correlations

- Heavy quarks are produced in hard scattering process with high Q^2
 - Radiate gluons, generating a parton shower and hadronize \rightarrow heavy-quark (HQ) Ο jet
- Angular correlations of heavy-flavour hadrons with charged particles allow to study HF parton shower. Phys.Lett.B 719 (2013) 29-41
 - Description of peak shapes and width, connected to HQ hadronisation process
- Give access to the production mechanisms:

Azimuthal correlation of D meson with charge particles

pp, $\sqrt{s} = 13.6$ TeV

• All the exploited PYTHIA8 tunes are consistent with data

$\Delta \varphi = \varphi_{\rm D} - \varphi_{\rm h}$

- Detector inhomogeneities and limited pair acceptance corrected by mixed-event technique
- Correlation distributions fitted with generalized Gaussian to describe the near-side and away-side peaks + pedestal
 - High $p_T^{\text{trigger}} \rightarrow$ Higher associated peak yield \rightarrow More energy available for fragmentation
 - High $p_T^{\text{trigger}} \rightarrow \text{Larger heavy quark boost} \rightarrow \text{More collimated peaks}$

$\mathbf{D}_{\mathbf{s}}^{+}$ meson (strange HF) correlation with charge particles

- Larger sample in Run 3 \rightarrow allows the study of D_s^+ angular correlations (not accessible in Run 2).
- Near-side:
 - Lower associated peak yield for D_s^+ compared to D^+ at low p_T^{trigger}
 - Consistent with D^+ correlations at higher p_T^{trigger}
- Away-side:
 - Consistent with D⁺ triggered correlations at all $p_{\rm T}$

- Different PYTHIA tunes overestimate the near-side peak at low $p_{\rm T}$, but are consistent with data at high $p_{\rm T}$
- The away-side peak is consistent with PYTHIA prediction for the entire $p_{\rm T}$ range

ALICE

D⁺ meson (strange HF) correlation with charge particles

• Away-side:

• Consistent with D⁺ triggered correlations at all $p_{\rm T}$

Possible explanation for the difference: harder fragmentation of charm quark into D_s^+ than nonstrange D mesons (consistent with z_{\parallel} measurement)

HF baryon correlations in pp

 $\Delta \varphi(\Lambda_c^+-h)$ correlations in pp collisions: study charm-baryon hadronization mechanism and possible differences from meson hadronization

- Larger Λ_c^{+}/D^0 ratio measured in pp compared to e⁺e⁻ at low and intermediate p_T^{-} .
- PYTHIA with CR-BLC modes, and models with coalescence describes the data within uncertainty.

• Λ_c^+ triggered correlations shows higher yield compared to D-meson at low p_T , no model is able to explain the observation

--- Average D^0 , D^+ , D^{*+}

 $- \Lambda_c^+$

HF baryon correlations in pp

 $\Delta \varphi(\Lambda_c^+-h)$ correlations in pp collisions: study charm-baryon hac $\overline{\xi}$ ALICE Preliminary, pp Ş mechanism and possible differences from meson hadronization HF-tagged charged-particle jets, anti- k_{T} , R = 0.43.0 $|\Delta \eta| < 1$ ALICE $7 \le p_{_{\mathrm{T}}}^{\mathrm{jet\,ch}} \; (\mathrm{GeV}/c) < 15, \; |\eta_{_{\mathrm{iet\,ch}}}| < 0.5$ (1/N_{jet ch}/ < 1 GeV/c 0⁰/2,1.0 O D^0 , $\sqrt{s} = 13$ TeV ALICE $2.5 = 3 \le p_{\tau}^{\text{HF}} (\text{GeV}/c) < 15, |y_{\mu\nu}| < 0.8$ baseline (rad⁻¹) ALICE **PYTHIA 8.243** \Box $\Lambda_{c}^{+}, \sqrt{s} = 13.6 \text{ TeV}$ |v| < 0.5---- Monash 2013 pp, *\s*=13 TeV — Mode 0 SHM+RQM --- Mode 2 $3 < p_{-}^{D, \Lambda_{c}^{+}} < 50$ 2.0 0.8 Mode 3 Ò POWLANG, HTL $0.3 < p_{-}^{\text{assoc}} < 1$ POWLANG, IQCD 0.6 +5% +5% scale 1.5 pp, $\sqrt{s} = 13 \text{ TeV}$ • $p_{-} > 1 \text{ GeV}/c$ <u>d</u>Δφ < 1 GeV/c (this paper) 1.0 1 × ND, 0.2 data PYTHIA 8 Monash. $\sqrt{s} = 13$ TeV PYTHIA 8 CR Mode 2, $\sqrt{s} = 13$ TeV 0.5 1.5 2 0.0 15 25 0 20 ALI-PUB-588404 $\Delta \phi$ (rad) p_ (GeV/c) JHEP 12 (2023) 086 0.8 0.6E arXiv:2411.10104 0.5 0.6 0.7 0.8 0.9 0.4

- Larger Λ_c^{+}/D^0 ratio measured in pp compared to e⁺e⁻ at low and intermediate p_T .
- PYTHIA with CR-BLC modes, and models with coalescence describes the data within uncertainty.
- Possible explanations:

ALI-PREL-582194

- Softer fragmentation of charm quark into Λ_c , consistent with z_{\parallel} measurement
- Contribution from decay of higher mass charm states (SHM+RQM)
- $\circ~$ Hadronization by coalescence impacting the mean $p_{\rm T}$ and associated-particle multiplicity

5

 Z_{\parallel}

HF baryon correlations in pp

• Λ_c^+ triggered correlations shows slightly lower width compared to D-meson at higher p_T , consistent within 2σ

- All models tend to overestimate the Λ_c^+ correlations peak width, though being consistent within 2σ
- PYTHIA8 Monash with additional resonant states (SHM+RQM) shows higher near-side yield compared to the default, and fails to reproduce data
- Resonance-decay with larger opening angles →a small increase of the baseline level→decrease away-side yields

HF-h correlation in p-Pb

Advantages of HFe-h correlations compared to D-h correlations:

- Higher p_{T}^{assoc} reach due to larger amount of correlation pairs
- Access to beauty fragmentation at high p_{T}^{HFe}

D-h correlation in pp and p-Pb

- \Box Near and away-side yields and width consistent in pp and p–Pb.
- \Box No modification in p-Pb \rightarrow No evidence of cold nuclear matter effects with current precision.

HF-h correlation in Pb-Pb

The per-trigger nuclear modification factor (I_{AA}) in 0-10% Pb-Pb

 I_{AA} for **c**,**b** \rightarrow e compared to K_s^0 -hadron and di-hadron correlations

- Similar trends for LF and HF triggers
- Caveats for comparing LF and HF: different hadron-to-parton $p_{\rm T}$ scale; additional decay kinematics for c,b -> e

- Near-side:
 - I_{AA} trends slightly above unity (1.3 σ) at low p_{T}^{assoc} ; $I_{AA} \sim 1$ at high p_{T}^{assoc}
- Away-side:
 - Hint of suppression (2.5 σ) for $p_{\rm T}^{\rm assoc} > 4 \, {\rm GeV}/c$

Summary:

- Azimuthal angular correlations of heavy-flavor trigger and charged hadrons → study and characterize heavy-flavor **ALICE** jet fragmentation and its modification in the presence of a QGP medium.
- pp collisions:
 - ✓ Non-strange charm-meson correlations well described by PYTHIA8 MC simulations.
 - ✓ Different correlation peak distributions observed for D_s^+ and Λ_c^+ compared to $D^{0,+}$ → not described by MC
 - possible effects from different fragmentation/additional hadronisation mechanisms.
- p-Pb collisions:
 - No sizeable impact of cold nuclear matter effect is observed with current precision.
- Pb-Pb collisions:
 - Presence of QGP affects the angular correlation distributions.
 - $\checkmark \quad \text{Hint of suppression of associated particle yield at high } p_{\mathrm{T}}^{\mathrm{assoc}} \text{ on the away-side.}$
 - I_{AA} for heavy-flavor triggered correlations similar to light-flavor triggers.

Outlook:

• Run 3 measurements with higher statistics and precision, and access to new/more differential observables will provide deeper insights into heavy-flavor fragmentation, in particular in the baryon sector

Back-up slides

- Smaller dependence on the hadronization models allows for a better comparison to QCD.
- Access to the heavy-parton kinematics.
- Investigate fragmentation and hadronization models.
- Mass dependence of parton radiation .

- Smaller dependence on the hadronization models allows for a better comparison to QCD.
- Access to the heavy-parton kinematics.
- Investigate fragmentation and hadronization models.
- Mass dependence of parton radiation .

Jets can be gluon initiated or quark initiated

- Smaller dependence on the hadronization models allows for a better comparison to QCD.
- Access to the heavy-parton kinematics.
- Investigate fragmentation and hadronization models.
- Mass dependence of parton radiation .

Jets can be gluon initiated or quark initiated

- Inclusive jets
 - Well constrained at high $p_{\rm T}$, low $p_{\rm T}$ experimentally challenging.
 - Mostly gluon initiated jets broader fragmentation

Gluon initiated jets Casimir colour factors $C_A/C_F = 9/4$

- Smaller dependence on the hadronization models allows for a better comparison to QCD.
- Access to the heavy-parton kinematics.
- Investigate fragmentation and hadronization models.
- Mass dependence of parton radiation .

Jets can be gluon initiated or quark initiated

- Inclusive jets
 - Well constrained at high p_{τ} , low p_{τ} experimentally challenging.
 - Mostly gluon initiated jets broader fragmentation
- Heavy-flavour jets:
 - Heavy guarks are conserved through the parton shower
 - Quark initiated jets more collimated
- Inclusive vs heavy-flavour jets
 - Effect of Casimir factors and dead cone

Radiation is suppressed for: $\theta < \theta_{dc} = m_{d}/E_{a}$

Gluon initiated jets

Heavy-flavour jets

Heavy-flavour fragmentation with ALICE

Measurements of HFe-tagged Jets

- *R* dependence on jet production is sensitive to internal structure of the jet
- pp and p–Pb results are similar within uncertainties
- Consistent with POWHEG prediction

- *R*_{pPb} of HFE-jet measured with R=0.3, 0.4, and 0.6 are consistent with unity
- No evidence of cold nuclear matter effect
- No *R* dependency found in $R_{_{\text{DPb}}}$.

ATHIC-2025

Why heavy-flavour?

QGP $\tau \approx 0.1-1$ fm/c

• Heavy-flavours (charm and beauty) are produced mainly by hard scattering processes at the early stages of the ultra-relativistic heavy-ion (or hadronic) collision due to large mass ($m_{c,b} >> \Lambda_{QCD}$).

Created before QGP

charm $\tau \sim 0.07$ fm/c, beauty $\tau \sim 0.02$ fm/c

- pp collisions
 - Test for pQCD calculations, baseline for heavy-ion collisions.
- p-Pb Collisions
 - Modification due to Cold Nuclear Matter (CNM) effects, gluon saturation effect.
- Pb-Pb collisions
 - Modification due to the interaction with the Quark Gluon Plasma (QGP), such as energy loss mechanisms.

To quantify the nuclear matter effects, nuclear modification factor (R_{AA} or R_{pA}) is used:

$$R_{\rm XA} = rac{1}{< N_{coll} >} rac{Y_{\rm XA}}{Y_{\rm pp}} \;\; {\it R}_{\rm XA}$$
= 1 $ightarrow$ No modification

 $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$

Heavy-flavour fragmentation with ALICE

HFe-charged particle correlations in Pb–Pb collisions

- Ratio to p–Pb yields show a hint of centrality dependence.
 - A hint of higher yield is observed for 0-20% centrality.
- Indication of possible modification of heavy quarks fragmentation.

Centrality: 20-50 %

Elliptic flow coefficient (v_2) in p–Pb collisions?

- High-multiplicity collisions—Enhancement of the near- and away-side peak regions.
- Low multiplicity event correlations are subtracted from the high multiplicity event to remove the jet-induced peaks.

Assumption: jet correlation function is not modified in low and high multiplicity events

V_2 of HFE-h correlation in p–Pb collisions

- Presence of long-range anisotropy with a significance of 5.1σ for heavy-flavour decay electrons.
- The effect is smaller to the one observed in the light-flavour sector.

Electrons from beauty quarks

https://arxiv.org/abs/2211.13985

- Compare $b \rightarrow e$ with combined $c, b \rightarrow e$
- See hint that $R_{AA}(b \rightarrow e) > R_{AA}(c, b \rightarrow e)$ at low $p_T \rightarrow$ hint of less energy loss of beauty versus charm in the QGP
- High p_T , results fully overlap; $b \rightarrow e/c \rightarrow e$ increases with p_T
 - Energy loss is observed in the medium ($R_{\Delta\Delta} < 1$).
 - A hint of smaller suppression of b (\rightarrow c) \rightarrow e with respect to (b, c) \rightarrow e (in the models).
 - R_{AA} is consistent with models that consider mass-dependent radiative and collisional energy loss.

Medium effects: D⁰⁻jets in 0-10% Pb-Pb

- Invariant mass was used to extract D⁰-jet raw signal spectrum with side-band subtraction.
- Correction for the D⁰-jet efficiency and D⁰-reflections.
- Subtraction of feed-down D⁰-jet component.
- POWHEG predictions convoluted with measured non-prompt D^0 $R_{_{AA}}$
- Jet- p_{T} spectra corrected for detector effects and background fluctuations

- D^0 -meson 3 < p_{τ} < 36 GeV/*c*
- Charged jets, anti- k_{T} algorithm with R = 0.3
- Jet 5 < p_T < 50 GeV/c

D-meson Baseline comparison with models in pp at 5.02 TeV

EPJC 80 (2020) 979

Model comparisons of D-charged particle correlation distribution in at 5.02 and 7 TeV

D-meson and charged particle azimuthal correlation

Ravindra Singh (INFN Padova) Heavy-flavour fragmentation with ALICE

HF jets to look into fragmentation

Provide access to the properties of heavy-quarks fragmentation and hadronization

- Hint of a softer fragmentation in data with respect to model predictions (especially NLO) for low p_{T chief} and large R.
- The core of the jet (R=0.2) is dominated by the HF hadron, as expected from the suppression of small angle emissions.
- At large angle (R>0.2) the charm quark emissions are recovered.

Medium effects: D⁰-jets in 0-10% Pb-Pb

 p_{T} -differential cross section in Pb-Pb central collisions

- Baseline: D⁰-jet p_{T} differential cross section in pp at 5.02 TeV with same jet reconstruction as in Pb-Pb.
- An area based background subtraction performed in Pb-Pb.

Sizeable suppression of D⁰-jets in central Pb-Pb collisions

Ravindra Singh (INFN Padova) Heavy-flavour fragmentation with ALICE

Medium effects: D⁰-jets in 0-10% Pb-Pb

Higher R_{AA} of D -jet compared to inclusive jets in Pb-Pb?

- Comparison is sensitive to difference between quarks and gluon energy loss (Casimir colour effect)
 - charged jets, anti- k_{T} 1.4 D⁰-jet, R = 0.3 Comparison could also be sensitive to mass effects $3 < p_{_{TD}} < 36 \text{ GeV}/c$ 1.2 (dead-cone). Normalized Yields Inclusive jets, R = 0.2 **ALICE** Preliminary pp, $\sqrt{s} = 5.02 \text{ TeV}$ Fit: a/x^b 10 0.8 = 4.419 (0.06)0.6 $- D^{0}$ -Jet, R = 0.3 10^{-2} - b_{D0-Jet} = 3.962 (0.06) 0.4 - Inclusive jets, R = 0.2b_{Inc. Jets} = 4.296 (0.004) 10^{-3} 0.2 $p_{\tau} ({\rm GeV}/c)$ 10 10^{-4} ALI-PREL-506530 35 45 50 30 40 p_{τ} (GeV/c) ALI-PREL-506553

 B_{AA}

ALICE Preliminary

0-10% Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

Ravindra Singh (INFN