Study of the QCD Phase Structure in High-Energy Nuclear Collisions

Outline

1)Introduction

2)Selected Recent Results

Collectivity and Baryon Correlation from FXT
Criticality from BES-II (collider)

3)Summary

Nuclear Collisions and QCD Phase Diagram

1) RHIC BES: \rightarrow search for 1st-order phase transition and **QCD critical point**;

2) Baryon interactions (e.g. N - N, Y - N) \rightarrow inner structure of compact stars

LGT Calculation: QCD Phase Structure

1)QCD transition temperature:									
$(T_{PC} = 156.5 \pm 1.5 \text{ MeV})$									
2) Chiral crossover line									
$T_{PC}(\mu_B) = T_{PC}^0 \left[1 - \kappa_2 \left(\frac{\mu_B}{T_{PC}^0} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_{PC}^0} \right)^4 \right]$									
$\kappa_2 = 0.012(4), \ \kappa_4 = 0.00(4)$									
3) Chiral transition temperature:									
$(\tilde{T}_{C} = 132^{+3}_{-6} \text{ MeV})$									
4) QCD critical end point:									
$T^{CEP} < T_C, \qquad \mu_B^{CEP} \gtrsim 3T_C$									
HotQCD: Phys.Lett. B795 , 15(2019); Phys. Rev. Lett. 123 , 062002(2019)									

Thermalization in Heavy-Ion Collisions

S. Gupta, **D. Mallick** *et al*. Phys. Lett. **B829**, (2022) 137021

Limits of thermalization in relativistic heavy ion collisions

Sourendu Gupta^a, Debasish Mallick^{b.c}, Dipak Kumar Mishra^d, Bedangadas Mohanty^{b.c.}*, Nu Xu^e

- Test of the thermal model with high moments data: 4TH order;
- 2) Below 39 GeV, data is not consistent with equilibrium.

"The 10TH Asian Triangle Heavy Ion Collisions", Berhampur, Odisha, India, January 13 – 16, 2025

Equation of State for Strong Interaction

- 1) Left-plot: Energy dependence of η/s extracted from lightflavor hadron v₂ and v₃. Rightplot: extracted from Bayesian fits to R_{AA} and v₂ at 200GeV collisions;
- 2) Both sides meet at the unity of the scaled temperature;
- 3) The values of η/s increase quickly below $\sqrt{s_{NN}} = 39 \text{ GeV}$ \rightarrow QGP dominants in higher energies;

4) Evidence of the QCD transition!

- 1) L.P. Csernai, J.I. Kapusta, L.D. McLerran, PRL<u>97</u> (2006) 152303
- 2) X.Dong, Y.J. Lee & R.Rapp, ARNPS, <u>69</u> (2019) 417
- 3) J.E.Bernhard, J.S.Moreland & S. Bass, Nat. Phys. <u>15</u> (2015) 1113
- I. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, Phys.Rev.<u>C91</u>, 064901 (2015).
- G.Nijs, W.van der Schee, U. Gürsoy and R. Snellings, PRL<u>126</u>, (2021) 202301

Strongly-Interacting Low-Viscosity Matter

STAR DETECTOR SYSTEM

TPC

Mag.

TOF

EPD

iTPC

MTD

EMC

eTOF

EEMC

Major Upgrades for BES-II

iTPC:

- Improves dE/dx
- > Extends η coverage from 1.0 to 1.6
- > Lowers p_T cut-in from 125 to 60 MeV/c
- Ready in 2019

- ➢ Forward rapidity coverage
- \blacktriangleright PID at $\eta = 0.9$ to 1.6
- Borrowed from CBM-FAIR
- ➢ Ready in 2019

EPD:

- ➢ Improves trigger
- Better centrality & event plane measurements
- ➢ Ready in 2018

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance centrality/event plane resolution

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF group, arXiv: 1609.05102 EPD: J. Adams, et al. NIM <u>A968,</u> 163970 (2020)

STAR Fixed Target Setup

CBM participates in RHIC BES-II in 2019 – 2021:
➤ Complementary to CBM program: √s_{NN} = 3 - 7.2 GeV (760
≥ µ_B ≥ 420 MeV)
➤ Strange-hadron, hyper-nuclei and fluctuation at the high

baryon density region

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC												
Collider Runs							Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Уbeam	run		√ S_{NN} (GeV)	#Event s	μ_B	Уbeam	run	
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21	
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21	
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21	
	57	00 WI	112 WIC V		Kull-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20	
5	27	585 M / 220	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20	
6	19.6	595 M/ 270 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20	
7	17.3	256 M / 116 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20	
8	14.6	340 M/ 145 M	262 MeV		Run-14, 19	0	45(0.8)	110 M	500 MaV	1.52	Dug 20	
9	11.5	257 M/ 110 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20	
10	9.2	160 M/ 78 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20	
11	7.7	104 M / 45 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19	
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21	
							-		-	•		

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Outline

1)Introduction

2) Selected Recent Results

Collectivity and Baryon Correlation from FXT
Criticality from BES-II (collider)

3)Summary

STAR FXT Program and High Baryon Density Region

Kaon Anti-Flow at High Baryon Density Region

- 1) A systematic analysis of the p_T dependence of the neutral- and charged-Kaon v₁ from Au+Au collisions at $\sqrt{s_{NN}} =$ 3.0 - 3.9 GeV;
- 2) At $p_T < 0.6$ GeV, all mid-rapidity v1 slopes are negative. Kaon potential was proposed to explain the data, ref.[1,2];
- 3) JAM model calculations suggest that spectator shadowing, similar to the case of elliptical v_2 , plays important role for the negative v_1 slope parameter.

→ Spectator shadowing → No Kaon potential is needed

References:

- (1) P. Chung et al. (E895), PRL <u>85</u>, 940(2000);
- (2) G.-Q. Li, C. M. Ko, and B.-A. Li, PRL <u>74</u>, 235 (1995) and S. Pal, C. M. Ko, Z.-W. Lin, and B. Zhang, PR <u>C62</u>, 061903(2000)

Baryon Correlation Functions

"The 10TH Asian Triangle Heavy Ion Collisions", Berhampur, Odisha, India, January 13 – 16, 2025

Functions 3.0 GeV

- 1) Centrality dependence of the $d \Lambda$ correlation functions from 3.0 GeV Au+Au collisions;
- 2) For the first time, spin dependent states, *D* and *Q*, identified experimentally!

→ New window for studying 3-body interactions in the laboratory

References:

- (1) J.M. Lattimer and M. Prakash, Science 304, 536 (2004);
- (2) M. Kohno and H. Kamada, arXiv:2406.13899;
- (3) H. W. Hammer, Nucl. Phys. <u>A705</u>,173 (2002)

NY Correlations

Hierarchy of strangeness content:

 $\int_{0}^{0.8} (|s| = 0) > f_0(|s| = 1) > f_0(|s| = 2) > 0$

Anteraction section is proportional to f₀², the observation implies that the strength of the interaction depends on strangeness;
Important for understanding EOS of the medium in nuclear collisions and ocompact stars; In-case of f₀ < 0, important for the search for di-baryons, such as pΩ⁻; -20 -10 0 10 20
Understand the strangeness hierarchy in QCD calculations?

High Moments from BES-II

Precision Measurements of (Net-)Proton Number Fluctuations in Au+Au Collisions at RHIC (STAR Collaboration)

A. Pamdav's talk

Expectations for Models

- Characteristic "Oscillating pattern" is expected for the QCD critical point but the exact shape depends on the location of freeze-out with respect to the location of CP;
- Critical Region (CR)

- M. Stephanov, PRL**107**, 052301(2011) - V. Skokov, Quark Matter 2012

- J.W. Chen, J. Deng, H. Kohyyama, Phys. Rev. **<u>D93</u>** (2016) 034037

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (B), charges (Q) and strangeness (S) are conserved;
- 2) Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ , phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Measured multiplicity N, $\langle \delta N \rangle = N - \langle N \rangle$ mean: $M = \langle N \rangle = C_1$ variance: $\sigma^2 = \langle (\delta N)^2 \rangle = C_2$ skewness: $S = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$ kurtosis: $\kappa = \langle (\delta N)^4 \rangle / \sigma^3 - 3 = C_4 / C_2^2$

Moments, cumulants and susceptibilities: 2^{nd} order: $\sigma^2/M \equiv C_2/C_1 = \chi_2/\chi_1$ 3^{rd} order: $S\sigma \equiv C_3/C_2 = \chi_3/\chi_2$ 4^{th} order: $\kappa\sigma^2 \equiv C_4/C_2 = \chi_4/\chi_2$ Animation: Anar Rustamov

INT 2008-2b : "The QCD Critical Point" F. Gross et al. 2212.11107: "50 Years of QCD"

Summary: Fluctuations

STAR FXT HADES CBM (2028)

"In summary, ... Dynamic model calculations including the criticality is needed in order to understand the results from BES-II. On the experiment side, data between $\sqrt{s_{NN}} = 3.0$ and 8.0 GeV is needed in order to search for the signals of QCD critical point and the 1st-order phase boundary."

*Predictions on

CP at 650 MeV

~ 4 GeV

 M. Hippert, *et al.*, 2309.00579; X. An *et al.*, NP <u>A1017</u> (2022) 122343;
W.J. Fu, *et al.*, 2308.15508; F. Gao *et al.*, PR <u>D104</u>, (2021) 054022

Outline

1)Introduction

2)Selected Recent Results

Collectivity and Baryon Correlation from FXT
Criticality from BES-II (collider)

3) Summary and Outlook

Summary

1) Rich physics at large μ_B region:

- Strangeness and EOS;
- Hypernuclei production;
- Baryon correlations;

2) QCD critical point:

- BES-II data offered high statistics, better acceptance, centrality resolution and systematic;
- ➢ Will do (i) p_T and rapidity scan; (ii) C₅, and C₆ analysis; (iii) complete the FXT data (√ s_{NN} = 3 3.9 GeV)

Future High Rates Experiments

Nuclear Collisions and QCD Phase Diagram

1) Property of QGP, smooth crossover transition at $\mu_B = 0$; 2) Search for 1st-order phase transition and **QCD critical point**; 3) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

Many Thanks to Organizers!

Acknowledgements:

P. Braun-Munzinger, X. Dong, S. Esumi, F. Karsch, V. Koch, XF. Luo, B. Mohanty, *A. Pandav*, A. Rustamov, K. Redlich, <u>M. Stephanov</u>, J. Stachel, J. Stroth, V. Vovchenko, *Y. Zhang*

Thank you for your attention!