Forward Physics at LHC-ALICE

ATHIC 2025, Mayfair Palm Beach Resort, Gopalpur, India, Jan. 13-16, 2025

Tatsuya Chujo

1st ATHIC (2006), Seoul, Korea

Our field is growing!

1st ATHIC (2006), Seoul, Korea

2nd ATHIC (2008), Tsukuba, Japan

Our field is growing!

Japanese	Korean	Chinese	Other	Sum
12	7	9	1	29
9	2	1	1	13
9	1	4	0	14
25	4	4	1	34
55	14	18	3	90

90 participants

1st ATHIC (2006), Seoul, Korea

2nd ATHIC (2008), Tsukuba, Japan

Our field is growing!

10th ATHIC (2025), Gopalpur, India

258 participants!

x3 larger than that in 2008

Japanese	Korean	Chinese	Other	Sum
12	7	9	1	29
9	2	1	1	13
9	1	4	0	14
25	4	4	1	34
55	14	18	3	90

90 participants

3. Large azimuthal anisotropy of particle emission (v₂)

Phys. Rev. Lett.98, 162301 (2007), PHENIX

4. Quark recombination

2 3 p_T (GeV/c)

[Turning point] High multiplicity events in small systems (2010)

STAR, PRC 80 (2009) 064912

CMS, JHEP 1009 (2010) 91

Still not well understood those phenomena

 \rightarrow because of the missing steps in QGP formation \rightarrow Early dynamics, nonlinear, non-equilibrium physics!

- 1. Two particle correlations ($\Delta \phi$, $\Delta \eta$)
- LHC pp, p-Pb, high multiplicity events Observed "Ridge" structure
- \rightarrow v₂ in pp, p-Pb !
- 2. Strangeness production is scaled by particle multiplicity (pp \rightarrow p-Pb \rightarrow Pb-Pb)

New questions

- Small droplet of QGP?
- Information of initial stages?
- Multi-parton interaction (MPI)?

Understanding of initial condition is crucial !

5. Kinetic freeze-out

- 4. Chemical freeze-out
- 3. QGP (local thermal equilibrium)
- 2. Glasma
 - **Collision!**

1. Initial condition (CGC)

arXiv:1804.06469v1, Jonah E. Bernhard

CGC and Glasma

Two unexplored steps

(1) Color Glass Condensate (CGC)

- nonlinear QCD evolution (gluons)
- Initial condition of QGP formation
- Undiscovered, properties are not known
- Directory connected to gluon density

(2) Glasma

- <u>non-equilibrated state</u>
- a state between CGC and QGP
- Very short time (0.4 0.6 fm/c), from CGC to QGP

\rightarrow Rapid thermalization problem

"Very Forward Rapidity Region"

→ Access to CGC and Glasma

5. Kinetic freeze-out

Chemical freeze-out 4.

QGP (local thermal 3. equilibrium)

rapid thermalization: ~0.6 fm/c

2. Glasma Nonequilibrated state for q/g

Collision!

Initial condition (CGC)

Nonlinear QCD evolution

arXiv:1804.06469v1, Jonah E. Bernhard

Color Glass Condensate (CGC)

proton

nucleus

Large x mid-rapidity Low energy scattering

 $x \approx \frac{2p_T}{\sqrt{s}} \exp^{-\eta}$

gluon splitting

 $\propto N_g$

CGC!

 \Rightarrow Balitsky-Kovchegov (BK) e.q.

ln x

Where we can see CGC?

- Small x and low Q region (but $Q >> \Lambda_{QCD}$)
- Universal picture of internal structure of high energy hadron (universality)
- Log-Log plot !
 - \rightarrow Essential to explore a wide x-Q² space
- Non-linear QCD evolution
- Find CGC signal \rightarrow Gluon density

- Study of saturation requires to study evolution of observables over large range in x at low Q^2
- Forward LHC (+RHIC) and EIC are complementary: together they provide a huge lever arm in x
- EIC: Precision control of kinematics + polarization
- Forward LHC: **Significantly lower x**
 - Observables: isolated y, jets, open charm, DY, W/Z, hadrons, UPC
- Observables in DIS and forward LHC are fundamentally connected via same underlying dipole operator
- Multi-messenger program to test QCD universality: does saturation provide a coherent description of all observables, and is therefore a universal description of the high gluon density regime?

Forward Calorimeter (FoCal)

- **- Fo**rward **Cal**orimeter
- LHC ALICE, $\sqrt{s_{NN}} = 8.8$ TeV, pp, pA
- Non-linear QCD evolution, <u>Color</u> glass condensate, initial stages of Quark Gluon Plasma (QGP)
- Physics in LHC Run 4 (2029-2032)
- TDR approved by LHCC on **March 2024**

FoCal (Lol) : <u>CERN-LHCC-2020-009</u> FoCal (TDR) : <u>CERN-LHCC-2024-004</u>

FoCal-H

Hadronic Calorimeter

z = 7 m

FoCal-E (pad, pixel)

Electromagnetic Calorimeter

Collision Point (IP2)

Main Observables:

- π^0 (and other neutral mesons)
- Isolated (direct) photons
- Jets (and di-jets)
- Correlations
- J/Ψ in UPC

 $3.4 < \eta < 5.8$

 $\eta = -\ln(\tan(\theta/2))$

Neutral mesons in FoCal

Prompt photon identification

Isolation

Restrict p_{T} within cone of R = 0.4

Shower shape Restrict shower ellipse elongation to reduce merged π^0 clusters

π^0 tagging Tag decay photons according to inv. mass of cluster pairs

Signal fraction Selections increase signal fraction $\times 11$

Saturation signal in FoCal (1)

Mäntysaari, Phys. Rev. D97 (2018) 054023

- Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV: 3 months; \mathcal{L} =7 nb⁻¹;
- pp at $\sqrt{s}=14$ TeV: ≈ 18 months, $\mathcal{L}=150$ pb⁻¹;

Saturation signal in FoCal (2)

Dilute-dense LO + Sudakov probes quadrupole operator

- Experimental challenge to see an effect of CGC in $\Delta \phi$ width?
- Theory: NLO cal. is needed

di-jet: multiple TMD distributions

- γ +jet, balanced di-jet at low-x: $k_T \sim Q_{sat}$ (sensitive to saturation)

- changing $k_{T}(p_{T}) \rightarrow$ exploring non-linear QCD evolution in wide kinematic coverage of *x*-Q² by FoCal

ALICE FoCal detector

Detector design

2/23/2021

SKB

3kg

12kg

Ton van den Brink

56kg

22x

FoCal-E (pad, pixel)

20 layers of W(3.5 mm \approx 1X₀) + silicon sensors:

- Two types: Pad (1x1 cm²) and Pixel (30 x 30 μ m²)
- Pad: shower profile and total energy
 - Si PAD sensor
- Pixel: position resolution to resolve overlapping showers
 - CMOS MAPS technology (ALPIDE)

FoCal-HConventional metal-scintillator designCu capillary-tubes enclosing BCF scintillating fibersSiPM readout

Uniqueness of FoCal detector

- 3)

Isolated photon ID

FoCal-E pad performance

MIP responce

JINST 19 P07006 (2024)

Longitudinal shower profiles

FoCal-E pad performance

Linearity

Results show expected behavior

JINST 19 P07006 (2024)

Energy resolution

FoCal-E PIXEL @ SPS test beam in 2022

<u>JINST 19 P07006 (2024)</u>

- Successful commissioning of FoCal-E PIXEL (ALPIDE)
- Distance between electrons here <5 mm,
- demonstration of a good two gamma separation
- Detector response well described by GEANT4 +
 diffusion model

FoCal-H

- Performance tested in hadron beam at SPS
- Energy response slope agreement between data and MC
- Energy resolution saturates at $\approx 12\%$
- Slight disagreement with simulation (GEANT4) under investigation

Energy response

JINST 19 P07006 (2024)

Energy resolution

Summary

- FoCal is a crucial new detector to understand QCD and \Im find a clear signal of CGC, exploring a wide kinematic coverage in x-Q² is crucial
- FoCal TDR has been approved, moving towards the construction
- Mass production has started in 2024, and physics in LHC Run-4 (2030-2033)
- Major contribution from Japan, India for FoCal
- FoCal provides the lowest x down to x ~10⁻⁶ to detect CGC signal clearly in LHC Run-4!

 $Q_s^2(x)$ DGLAP **JIMWLK** BK saturation non-perturbative region

ln x

24