Experimental overview on recent measurements of Resonances and Exotics

Junlee Kim¹

January 13-16, 2025 Asian Triangle Heavy-Ion Conference Gopalpur, India

1. CERN

1/15

Highlighting a very limited selection of topics for exotic particle measurements at LHC energy

Resonances in hadronic phase

- Modifications of resonance yields to study late hadronic phase
- Dependent on:
 - 1) Particle composition at chemical freeze-out. 2) Lifetime of hadronic phase.
 - 3) Lifetime of resonances. 4) Scattering cross sections of decay products.

Junlee Kim

Strangeness enhancement in small collision systems

Nature Phys. 13 (2017) 535-539

HUING Ph_Ph PYTHIA Angantyr, Pb-Pb IST CE SHM V = 3 dV/dv T.,..., dV/dy, and y from Phys. Rev. C 100 (2019) 054906 103 $\langle dN \rangle / d\eta \rangle$ Correlation between

arXiv:2405.19890

- Strangeness enhancement only in small collision systems due to undersaturation of strangeness
- Thermal model is more favored than string fragmentation by experimental data.
- Useful tool to investigate quark contents

Modifications of resonance yields

Several short-lived resonances are suppressed with increasing multiplicity

- Suppression trend is continuous from small to large collisions systems for mesons
- Suppression is rarely observed in small collision systems for baryons but becomes sizable in large collision systems.
- Resonances having longer lifetime are not suppressed.
- EPOS with UrQMA qualitatively describes trend with multiplicity.
- Suppression is not observed nor expected for $\Sigma^{*\pm}$. $\leftrightarrow \Lambda(1520)$
 - Inelastic cross sections?
 - Regeneration?

Transverse momentum dependence

Junlee Kim

Lower limit hadronic phase lifetime from modification of resonance yields

$$\left(\frac{K^*}{K}\right)_{\rm kin} = \left(\frac{K^*}{K}\right)_{\rm chem} \times \exp(-\tau_{\rm low}/\tau_{\rm K^*}),$$

where no regenerations were assumed.

 $\left(\frac{K^*}{K}\right)_{chem}$: particle yield ratio at low-multiplicity events

Smooth evolution with increasing multiplicity

Exotic states

The understanding of exotic hadrons can provide better insight into the non-perturbative regime of Quantum Chromodynamics.

Powerful tool to study partial restoration of chiral symmetry

Exploration of internal structures of exotic particles based on observed phenomena at LHC energies

- Strangeness enhancement
- Modification of resonance yields
- Number of constituent quarks scaling
- Cronin-like enhancement

$f_0(980)$ resonances

- No (anti-)strange quarks inside $f_0(980)$ favored from both results
- What about in large collision systems?

Junlee Kim

$f_0(980)$ resonances

• $p_{\rm T}$ dependence of f_0/π similar to K^{*}/K: Exhibition of rescatterings?

• $p_{\rm T}$ dependence of f_0/K^* not compatible with f_0/π nor K^*/K

Junlee Kim

$f_0(980)$ resonances

No Cronin-like enhancement for $f_0(980) R_{pPb}$: Not a baryonic state?

• Further enhancement for tetraquark state: PLB 645 (2007) 138

The origin of flow from constituent quarks $\rightarrow f_0(980)$ flow aligned with conventional meson

• Disclaimer: Definition of event plane in p–Pb collisions to be clarified

Important input into the chiral symmetry for the lightest pseudoscalar mesons

Junlee Kim

$f_1(1285)$ resonances

Chiral partner of ω meson: good probes to observe partial restoration of chiral symmetry

- Thermal model favors no (anti-)strange quarks inside $f_1(1285)$.
- Baseline measurement for the first time at LHC energy

Junlee Kim

ATHIC 2025 **イロト イクト イミト イミト** ミークへで

Search for Glueball candidates via KK channels

• $K_s^0 K_s^0$ channel for lower combinatorial backgrounds

• New perspectives on how hadron structure influences $R_{\rm AA}$ and flow

Junlee Kim

$\Sigma(1820)$ and $K_1(1270)$

Convergence of invariant mass (PRD 7 (2019) 074503), evolution of particle yield ratio (PLB 819 (2021) 136388)

 \rightarrow important inputs for partial restoration of chiral symmetry

Junlee Kim

 $\mathbf{A} \equiv \mathbf{b}$

31

Promising exotic candidates?

- *H*-dibaryon to be resonant state? PRC 75 (2007) 022201
- Little bump: statistical fluctuation?
- Replusive interaction?
- A new results with high statistics in Run 3?

50

100

150

0 200 *k** (MeV/*c*)

0.4

Conclusions

Multi-dimensional measurements of resonances to understand hadronic phase between chemical and kinetic freeze out

- Better understanding of strangeness enhancement providing more precise particle composition at chemical freeze-out
- Modifications of resonance yields from small to large collision systems not simple
- Also useful to understand light-flavored resonances, which posses broad particle width

Differential measurements on exotic states

- Formation of exotic state: Better understanding of non-perturbative QCD regime.
- Strong proves to observe partial restoration of chiral symmetry

