EXPERIMENTAL STATUS OF QCD PHASE DIAGRAM

Ashish Pandav (Lawrence Berkeley Lab) ATHIC2025, Berhampur Jan 13, 2024

Outline

BERKELEY LAB

INTRODUCTION: QCD PHASE DIAGRAM

Phase diagram of strongly interacting matter] Largely conjectured

INTRODUCTION: QCD PHASE DIAGRAM

 \Box Theory predictions in $\mu_R - T$ plane. Experimental search very important.

- Lattice calculations at high μ_B suffer from sign problem
- Effective models have several underlying assumptions/ approximations

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

OBSERVABLES (SELECTED):

Observable	Definition	Comments
Particle ratio fluctuation $ u_{dyn} $	$\frac{\langle N_x(N_x - 1) \rangle}{\langle N_x \rangle^2} + \frac{\langle N_y(N_y - 1) \rangle}{\langle N_y \rangle^2} - 2\frac{\langle N_xN_y \rangle}{\langle N_x \rangle \langle N_y \rangle}$	For CP search: Look for non-monotonic collisic energy dependence
Momentum correlation $< \Delta p_{T,i} \Delta p_{T,j} >$	$\frac{1}{N_{ev}} \sum_{k=1}^{N_{ev}} \frac{C_k}{N_k(N_k - 1)}$ $C_k = \sum_{i=1}^{N_k} \sum_{j=1, j \neq i}^{N_k} (p_{T,i} - \langle M(p_T) \rangle)(p_{T,j} - \langle M(p_T) \rangle)$	Look for non-monotonic collisic energy dependence
Intermittency: Scaled factorial mom. $F_q(M)$	$ < \frac{1}{M^2} \sum_{i=1}^{M^2} n_i (n_i - 1) \dots (n_i - q + 1) > < \frac{1}{M^2} \sum_{i=1}^{M^2} n_i > $	Look for scaling behavior of facto moments w.r.t bin size M
Femtoscopic correlation function $C(k^*)$	$N\frac{A(k^*)}{B(k^*)}$	Look for power law scaling of correlation function
Fluctuations/Cumulants of conserved charge C_n	$\begin{split} C_1 &= < n > , C_2 = < \delta n^2 > \\ C_3 &= < \delta n^3 > \\ C_4 &= < \delta n^4 > - 3 < \delta n^2 >^2 \end{split}$	Look for non-monotonic collisic energy dependence

OBSERVABLES (SELECTED):

Definition	Comments
$\frac{1)}{2} + \frac{\langle N_y(N_y - 1) \rangle}{\langle N_y \rangle^2} - 2 \frac{\langle N_x N_y \rangle}{\langle N_x \rangle \langle N_y \rangle}$	For CP search: Look for non-monotonic collisio energy dependence
$\frac{1}{N_{ev}} \sum_{k=1}^{N_{ev}} \frac{C_k}{N_k(N_k - 1)}$ $\sum_{i=1, j \neq i}^{N_k} (p_{T,i} - \langle M(p_T) \rangle)(p_{T,j} - \langle M(p_T) \rangle)$	Look for non-monotonic collisio energy dependence
$\frac{\sum_{i=1}^{M^2} n_i (n_i - 1) \dots (n_i - q + 1)}{< \frac{1}{M^2} \sum_{i=1}^{M^2} n_i >}$	Look for scaling behavior of facto moments w.r.t bin size M
$N\frac{A(k^*)}{B(k^*)}$	Look for power law scaling of correlation function
$= \langle n \rangle, C_2 = \langle \delta n^2 \rangle$ $C_3 = \langle \delta n^3 \rangle$ $= \langle \delta n^4 \rangle - 3 \langle \delta n^2 \rangle^2$	Theory calculation availabl Look for non-monotonic collisio energy dependence

FLUCTUATIONS NEAR CP:

Critical Opalescence: *CO*₂ **appears milky white**

T. Andrews. Phil. Trans. Royal Soc., 1869, 159:575.

Development of long range density fluctuations,

Divergence of correlation length, thermodynamic response functions (susceptibility, compressibility etc)

Enhanced fluctuations expected near CP.

How to quantify fluctuations? measure cumulants.

CUMULANTS:

•Cumulants: n = net-proton multiplicity in an event $C_1 = \langle n \rangle$ $C_2 = \langle \delta n^2 \rangle$ $*\delta n = n - \langle n \rangle$ $C_3 = <\delta n^3 >$ $C_4 = <\delta n^4 > -3 <\delta n^2 >$ $C_5 = \langle \delta n^5 \rangle - 10 \langle \delta n^3 \rangle \langle \delta n^2 \rangle$ $C_6 = \langle \delta n^6 \rangle - 15 \langle \delta n^4 \rangle \langle \delta n^2 \rangle - 10 \langle \delta n^2 \rangle$ • Factorial cumulants:

$$\begin{aligned} \kappa_1 &= C_1 \\ \kappa_2 &= -C_1 + C_2 \\ \kappa_3 &= 2C_1 - 3C_2 + C_3 \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\ \kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\ \kappa_6 &= -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 \\ &+ C_6 \end{aligned}$$

Kurtosis: Peakedness

$$<\delta n^3 >^2 + 30 < \delta n^2 >^3$$

M. A. Stephanov, PRL 107 (2011) 052301

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL111, 062005(13)

Related to correlation length: $C_2 \sim \xi^2$, $C_4 \sim \xi^7$ Finite size/time effects reduces ξ Higher order→more sensitivity C_{4q} **Related to susceptibilities: -** $\mathbf{C}_{2q} \quad \mathbf{X}_2 \quad \mathbf{C}_{2q}$ Comparison with lattice QCD, HRG, QCD-based model calculations

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics \Box Experimentally establish crossover at small μ_R \Box Search for signatures of 1st order P.T. at large μ_R Search for signatures of QCD critical point

EXPERIMENTALLY ACCESSING QCD PHASE DIAGRAM

 \Box Varying collision energy, impact parameter varies T and μ_{R} of system created Study energy/centrality dependence of cumulants

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

ACTIVE EXPERIMENTS STUDYING QCD PHASE DIAGRAM:

Experiment	Facility	Mode	Colliding energy $(\sqrt{s_{NN}})$	Systems* *Not all are listed
HADES	SIS18	FXT	2.32 - 2.7 GeV	Au+Au, Ag+Ag, C+C, p+p
NA61/ Shine	SPS	FXT	5.1 - 17.3 GeV	Pb+Pb, Be+Be, Ar+Sc, p+p
STAR	RHIC	COL/ FXT	3 - 200 GeV	Au+Au, U+U, Zr+Zr, Ru+Ru, Cu+Cu, d+Au He3+Au, p+Au, p+p
ALICE	LHC	COL	2.76 - 13 TeV	Pb+Pb, Xe+Xe, p+Pb, p+p

ANALYSIS:

Identifying and selecting protons and antiprotons within a kinematic phase space.

> **(**) Construct net-proto distributions, obtain sumulants of these distribution 10

et-proto

40⊢

30

20

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

 \Box Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

Search for signatures of QCD critical point

RESULTS: STUDY OF THERMODYNAMICS

Study of thermodynamics: Net-baryon $C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$ - Lattice

LQCD: HotQCD, PRD101,074502 (2020) FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021) STAR: PRL 130, 082301 (2023) : PRL 127, 262301 (2021)

STAR: PRL 126, 092301 (2021) : PRC 104, 024902 (2021)

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

Search for signatures of QCD critical point

STAR: PRL 127, 262301 (2021) STAR: PRL 130, 082301 (2023)

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) LQCD: HotQCD, PRD 101, 074502 (2020) FRG: Wei-jie Fu et. al, PRD 104, 094047 (2021)

- Increasingly negative C_6/C_2 (down to 7.7 GeV) with decreasing $\sqrt{s_{NN}}$ (1.7 σ significance) - a trend consistent with lattice QCD
- $C_6/C_2 > 0$ at 3 GeV, sign reproduced by

RESULTS: HYPER-ORDER FLUCTUATIONS IN SMALL SYSTEM

 Fifth and sixth order cumulant ratios progressively negative towards higher charged particle multiplicity– approaching lattice calculation that includes a crossover.

STAR: arXiv:2311.00934

RESULTS: DATA AT VANISHING μ_R

Vanishing third order cumulant ratio – consistent with LQCD and HRG calculations

☐ HIJING, EPOS does not describe the data well.

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter

Check if produced system is governed by thermodynamics

 \Box Experimentally establish crossover at small μ_R

 \Box Search for signatures of 1st order P.T. at large μ_R

Search for signatures of QCD critical point

RESULTS: SEARCH FOR THE FIRST-ORDER PHASE TRANSITION

Two-component distribution: Large factorial cumulants with alternating sign

 \Box For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the two-component shape of proton distributions expected near a 1st order P.T.

Precision measurement needed.

A. Bzdak and V. Koch, PRC100, 051902(R) (2019)

Towards making the QCD phase diagram a reality

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics \Box Experimentally establish crossover at small μ_R \Box Search for signatures of 1st order P.T. at large μ_R

Search for signatures of QCD critical point

RESULTS: SEARCH FOR THE CRITICAL POINT

CP search

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301 C_{4}/C_{2} baseline

Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 of conserved quantity existence of a critical region Assumption: Thermodynamic equilibrium

target program. About factor 4 reduction in stat. and sys errors. More measurement ongoing.

RESULTS: SEARCH FOR THE CRITICAL POINT

CP search

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301

Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 of conserved quantity - existence of a critical region Assumption: Thermodynamic equilibrium

See talk from Bappa Mondal (Wed)

 \Box Minimum seen in C4/C2 (0-5%) w.r.t. non-CP baselines around 20 GeV at ~3-5 σ significance.

A. Pandav (STAR): CPOD24

STAR: PRL 128, 202302 (2022) STAR: PRL 127, 262301 (2021)

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

FINDINGS:

Perform collisions of nuclei to produce and study QCD matter Check if produced system is governed by thermodynamics

- \square Experimentally establish crossover at small μ_{R} Observed sign and trend in data ($\sqrt{s_{NN}} \ge 7.7$ GeV) consistent with calculations from lattice QCD ($\mu_R < 110$ MeV) with a crossover at $O(\sim 1\sigma)$ significance level.
- Search for signs of 1st order P.T. at large μ_R Data ($\sqrt{s_{NN}} > 7.7$ GeV) within uncertainties suggest absence of any bimodal structure expected near 1st order phase transition.
- Search for signs of QCD critical point Minimum seen in net-proton C4/C2 (0-5%) w.r.t. non-CP baselines around 20 GeV at \sim 3-5 σ significance - a feature of the proposed signal of the CP.

- Data ($\sqrt{s_{NN}} \ge 7.7$ GeV or $\mu_B < 420$ MeV) within uncertainties favors ordering expected from
- lattice thermodynamics. 3 GeV data violates. QCD matter out of equilibrium at 3 GeV?

INTERESTING TRENDS IN OTHER OBSERVABLES

STAR: PRL 130, 202301 (2023)

Light nuclei ratio show deviation around $\sqrt{s_{NN}} = 19.6$ and 27 GeV.

STAR: Hanwen's CPOD2024 talk

higher energies.

 C_{BS} deviates from lattice/FRG at $\sqrt{s_{NN}} \le 27$ GeV, consistent at STAR: Emmy's CPOD2024 talk

Slope of Excess-p v_1 follows a scaling at $\sqrt{s_{NN}} \ge 14.6$ GeV. Scaling broken at lower energies.

Baryonic Chemical Potential μ_{R} (MeV)

- $\sqrt{s_{NN}}$ = 20 GeV. Theoretical insights needed for interpretation of data in regards to CP.

- Extensive BES-II measurements ongoing from $\sqrt{s_{NN}} = 3 27$ GeV.

• Minimum seen in C4/C2 (0-5%) precision BES-II data w.r.t. non-critical baselines (~3-5 σ) around

• Crossover for $\sqrt{s_{NN}}$ > 27 GeV ($\mu_B \leq 110$ MeV): Lattice QCD, interesting trends also seen in BES-I data • Data falling to hadronic baseline at $\sqrt{s_{NN}} = 3$ GeV ($\mu_B = 720$ MeV): hadronic interactions dominant (observation supported by breakdown of NCQ scaling)

OUTLOOK: EXTENDING TO HIGHER μ_R

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105 01+504 (2022)

OUTLOOK: HYPER-ORDER DATA AND ACCEPTANCE SCAN

Collision Energy $\sqrt{s_{NN}}$ (GeV)

Hyper-order data: probes for crossover. STAR: BES-II, Au+Au at $\sqrt{s_{NN}} = 200$ GeV: ~ 20 billion event (2023+2025) and $\sqrt{s_{NN}}$ = 3 GeV: ~ 2 billion events collected. Precision measurement ongoing.

CONCLUSION:

Several intriguing observations made from currently available data. Lot of new precise experimental data to come.

Detailed theoretical studies on QCD phase structure ongoing.

New experimental facilities at high baryon density to come in upcoming years: CBM@FAIR, NICA@JINR, J-PARC, HIAF.

Exciting times ahead. Stay tuned.

ACKNOWLEDGEMENTS:

Alphabetically: Xin Dong, ShinIchi Esumi, Yige Huang*, Ho-San Ko*, Xiaofeng Luo, Debasish Mallick*, Bedanga Mohanty, Dylan Neff*, Risa Nishitani*, Bappaditya Mondal*, Toshihiro Nonaka, Fan Si*, Zachary Sweger*, Zhaohui Wang*, Yongcong Xu*, Nu Xu, Xin Zhang*, Xiuxian Wang*, Yifei Zhang, Yu Zhang.

RHIC operation, STAR Collaboration members, and RNC group. Organizers for the opportunity. **Thank you all.**

ENERGY DEPENDENCE OF C_4/C_2 : COMPARISON WITH BES-I

•BES-II results consistent with BES-I within uncertainties.

Deviation between BES-II and BES-I data

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%
7.7	1.0σ	0.9σ
11.5	0.4σ	1.3σ
14.6	2.2σ	2.5σ
19.6	0.7σ	0.1σ
27	1.4 <i>o</i>	0.2σ

