

Physics at sPHENIX

Maya SHIMOMURA Nara Women's University

ATHIC2025@Gopalpur-On-Sea, Berhampur, Odisha

THIC 2025

Physics goals of RHIC- sPHENIX

Quark Gluon Plasma(QGP) physics

- Parton energy loss
 - Flavor dependence energy loss
- Quarkonium spectroscopy
 - Melting of different state upsilons with RHIC temperature
- Jet structure and modification
 - Parton-QGP interaction

Cold-QCD study

- Spin structure of proton

Time evolution of the collisions

Also, it is not possible to use the probe from the outside. The probe from collision itself is used.

Partons lose their energy while photons are not. p+p is the reference as non QGP matter. Jet R_{AA} is smaller than hadrons at the same p_T range - The difference is described by the model with virtuality Jet and Hadron R_{AA} is increasing at higher p_T

HF measurement – mass dependences

Jet at sPHENIX

¥

0.8

0.6

0.4

0.2

2025/1/14

ATHIC2025@Gopalpur MayaShimomura

No Eloss

Upsilon spectroscopy

- Separate three Upsilon states (1s, 2s, 3s)
 - Υ (3s) is quantified if suppression is less
- Study centrality and $p_{\rm T}$ dependence
- RHIC is more clean than LHC
- No regeneration of Upsilon at RHIC 2025/1/14 ATHIC2025@Gopalpur MayaShimomura

- QGP seems to be formed in small system collisions with relatively large multiplicity.
- A wide range of multiplicities exists at fixed N_{part} because of various effects like MPI, different N_{coll} values, etc.

Multi-parton interaction(MPI)

v2 vs. 2D multiplicity (event categorization)

- Particles produced by collision are going into MBD(INTT). \rightarrow Multiplicity
- Spectator neutrons are going into ZDC. \rightarrow N_{part} + N_{spec} = Const.
- Measuring v_2 with 2D categorization of N_{part} and multiplicity.

These v_2 seem to reflect initial geometry differences, but they have the same multiplicity. $\rightarrow N_{part}$ is different but multiplicity is the same.

sPHENIX with 2πdetector will give non-biased measurement at mid-rapidity.

2025/1/14

sPHENIX detectors

sPHENIX: First full jet & b-jet detectors at RHIC

- First HCAL + EMCAL at RHIC
- Acceptance: $\ln|<1.1, 2\pi$ in ϕ
- 1.4 T solenoid (BaBar)
- High-speed DAQ: 15 kHz for all subdetectors
- Inner layer tracking system

- Tracking system
- Time Projection Chamber(TPC)

Calorimeter

system

MACHET

TPOI

TPC

system

iHCa

INT

MVTX.

- Time Projection Chamber Outer Tracker(TPOT)
- Intermediate Tracker(INTT)
- Micro-Vertex Detector(MVTX)

Calorimeter system

- Electromagnetic Calorimeter(EMCal)
- Inner Hadronic Calorimeter(iHCal)
- Outer Hadronic Calorimeter(oHCal) Tracking

Global detectors

- Minimum Bias Detector(MBD)
- Event Plane Detector (sEPD)
- Zero degree Calorimeter(ZDC not shown)

ATHIC2025@Gopalpur MayaShimomura

sPHENIX detectors

sPHENIX: First full jet & b-jet detectors at RHIC

- First HCAL + EMCAL at RHIC
- Acceptance: $\ln|<1.1, 2\pi$ in ϕ
- 1.4 T solenoid (BaBar)
- High-speed DAQ: 15 kHz for all subdetectors
- Inner layer tracking system

2023

March: Detector construction completed April: Commissioning begins with AuAu collisions.

August: Beam stops due to RHIC trouble. Commissioning continues with cosmic rays.

2024:Measurement of p1p and AuAu collisions (see next page) 2025: March: AuAu collisions measured. March: AuAu collisions scheduled to start. Priority is to collect sufficient amount of data for AuAu. Work on additional programs such as pAu, pp, OO, etc. as opportunities arise

Calorimeter system

Run for three years

Year	Species		Cryo-Weeks	Goal
2023	Au+Au	200	10.5	Commissioni ng and Au+Au
2024	$p\uparrow + p\uparrow$	200	24	Au+Au baseline and Cold-QCD physics
2024	Au+Au	200	3	
2025	Au+Au ??	200	28	Au+Au large dataset

Commissioning and 1st physics Au + Au 200 GeV

Reference p+p Cold QCD/small systems

High statistics Au + Au

sPHENIX data taking in 2024 successfully finished.

Run2024

- Transversely polarized proton $p \uparrow p \uparrow @\sqrt{s} = 200 \text{ GeV}$
 - Commissioning
 - Physics data taking (2024/06 2024/09)
- Commissioning for AuAu $@\sqrt{s} = 200 \text{ GeV}$

- March: maintenance of TPCs completed. Set-up reconstruction completed.
- April: commissioning by $p \uparrow p \uparrow$ begins.
- June: Start of physical data collection (Calorimeter Data).
- August: start of stable operation of TPC. Start of physics data collection with full set-up.

(All detector data, Tracker streaming data).

October: commissioning by AuAu.

sPHENIX measurement: $\pi^0 V_2$

- π^0 is reconstructed. RP is calibrated.
- Event plane detector(sEPD) give better resolution for RP. Analysis is on-going.
- v_2 vs. centrality agree to previous measurement.

-2

 $2\Psi^{N}$

10000

8000

6000

4000

Successfully obtained dE/ $d\eta$

dE/ $d\eta$ by EMCal and Hcal agreed well.

Comparable results with previous measurement.

summary

- sPHENIX took p+p data and were commissioned with Au+Au collision.
- The streaming readout and trigger readout are both working for the tracking detectors.
- The analysis show the detectors properly worked. Analysis for new physics results in p+p are ongoing.
- sPHENIX is ready to take massive Au+Au data in this coming run.

End of Run24 p+p party (Sep 30)

End of Run24 Au+Au party (Oct 21)

Thank you.

Back up

Effect of the ZDC detecting only neutrons.

ATHIC2025@Gopalpur MayaShimomura

Heavy Flavors and HF-Jets

- Study radiative and collisional energy loss w/ broad $p_{\rm T}$ range
- First b-tagged jets at RHIC
 - Jet + displaced vertex

S_{loss}, S_{loss,in} and S_{loss,out}

$$S_{loss}$$
, $S_{loss,in}$, $S_{loss,out}$ vs. L, $dN_{ch}/d\eta$, N_{part}

Fitting function $f(x) = p0 * x^{p1} + p2$

*Similar results for the measured $p_{\rm T}$ regions (4-10GeV/c)

• S_{loss} , $S_{\text{loss,in}}$, $S_{\text{loss,out}}$ draw a curve as a functions of N_{part} better than L and dN/d η . indicates the importance of initial particle density dependence. \rightarrow 25 2025/1/14

Elliptic flow (v_2) in Au+Au

 v_2 is the strength of the elliptic anisotropy of produced particles.

A sensitive probe to the properties of the hot dense matter produced by heavy ion collisions.

• Elliptic flow (v₂) is scaled by N_{part} or $dN/d\eta$?

PHENIX Detector

- PHENIX completed the data taking in 2016. Analyses are ongoing.
- The data of Au+Au collision at $\sqrt{s_{NN}} = 200 \text{GeV}$ taken at RHIC-PHENIX in 2014 is analyzed.

Results: v_2 vs. multiplicity without any ZDC cut

- v₂ without ZDCe event categorization decreases with multiplicity.
- Consistent with the initial geometry.

Results: v_2 vs. multiplicity with new ZDC categorization at central collision

Red: without ZDCe event categorization
Blue: with ZDCe event categorization
(300<ZDCe<310) which is corresponding to the collision centrality ~ 2%

• The ZDC categorization makes the slope flatter, but does not invert it to positive at very central.